
Ton Kostelijk 1

Execution Architecture
of a Real-Time system

Dr. A.P. Kostelijk
Ing. B. Smets

Ton Kostelijk 2

Real Time systems are characterized such that besides
functional requirements also timing requirements
should be met. These timing requirements are usually
verified very late in the development lifecycle and so
result in a lot of rework in a late stadium.

In this presentation I will present the different steps to
create an execution architecture for a real-time
system, such that this rework is reduced.

Speaker Notes

Ton Kostelijk 3

Contents
• Introduction: aim, timing requirements
• The ‘g4event’ model (Parametrize)
• Exec arch steps (Gomaa’s codarts)
• Meeting timing requirements (RMA)
• Shared resources, deadlocks, starvation
• Summary
• Conclusions, remarks

Ton Kostelijk 4

Speaker Notes
When designing an execution architecture, one can think of many
resources which are important and should be analysed in the run-time
environment: e.g. memory usage, on screen display or graphics, etc. This
presentation will focus on the processor (CPU) as a resource. So I will
describe techniques which can be used to analyse the run-time behaviour
of the system.

First the goals are explained to design a good execution architecture. Then
three techniques are explained to reach the goal:

a parametrizable model is shown
a technique to use this model during the design steps.
a technique which guarantees that timing requirements are met.

Then I will present the basic steps in the real-time analysis before
concluding this presentation with the experience in the G+4 Set Top Box
project.

Ton Kostelijk 5

Intro: Context = Soni’s views
• Conceptual architecture
• Scenario’s (addition to Soni)
• Functional decomposition
• Execution architecture
• Code architecture

Ton Kostelijk 6

Intro: Goals (1)
• Related requirements for the execution

architecture design:
– Timing related:

• Meet timing requirements
• Prevent deadlocks
• Prevent starvation

Ton Kostelijk 7

During the architecture start-up phase, Soni (an expert in architectures from
Siemens) shows that several architecture views are necessary to describe the
architecture of your system.
The execution architecture view describes the dynamic structure of the system.
To create a good execution architecture it must be designed such that it is:
• flexible -> easy extendable (which is important for a platform), easy

adaptable (different products derived from a platform have their own
requirements, so also timing requirements)

• orthogonal to the functional architecture view. The functional architecture
describes the functional decomposition and layering of the system.

• and last but not least that it guarantees that all timing requirements are met

To reach this goal, three techniques are described. Let’s start with the first
technique : create a parametrizable execution architecture using ‘g4events’.

Speaker Notes

Ton Kostelijk 8

Intro: Goals (2)
• Requirements for the execution architecture

design:
– others:

• Decoupled from other views, to prevent
rework multiplication.

• Allow designers work in parallel.
• Easily modifyable, because at first no

performance times are known.

Ton Kostelijk 9

Intro: Goals (3)
• Starting point:

• orthogonal to functional architecture
• flexibility: extendable and adaptable
• guarantee timing requirements

Ton Kostelijk 10

What are timing requirements?

System

∆t
Event
Required deadline
Actual response

Ton Kostelijk 11

What are timing requirements?
• Event:

– external: signal: e.g. device or timer
– internal: handover some datastructure
– active or passive = interrupt or polling
– Tree of events = action flow

∆t2

∆t1

Ton Kostelijk 12

What are timing requirements?
A taxonomy of events:

• Cyclic
• A-cyclic
• Hard and soft response times
• Worst, best and typical case
• Very complex

Ton Kostelijk 13

What are timing requirements?
• Concurrency is needed?

– Idle processor can be utilised
– Timing requirements must be met for all possible

interleavings
– RT-OS (pSOS, VX-WORKS, etc…)

Ton Kostelijk 14

What is a (real-time) operating system?
• Multi-tasking
• Timesharing versus multi-processing
• Cooperative versus preemptive scheduling
• Priority (RTOS) versus fairness (e.g. UNIX)

based scheduling
• Task = process = thread, for today

Ton Kostelijk 15

What are timing requirements:
what is the key?

• Focus on events and action flow,
not on tasks.

• Task mapping is a derived
implementation detail, neither a
requirement nor a starting point.

Ton Kostelijk 16

Notation

Encapsulation Thread Queue

Ton Kostelijk 17

The ‘g4event’ model (1/6)

Object O1

Objects / modules communicate via (member)
functions

Synchronous execution

F1

body

callT1

Ton Kostelijk 18

A task T1 needs to execute somefunction and has a certain timing requirement. So when
T1 is running it should respond within a certain time. Function F1 has an interface part
‘F1’ and a main body where the real work is done ‘body’. T1 executes F1 from object O1,
which directly calls its body. Suppose now that in the body of F1, we have to wait for a
hardware response. This means that T1 is hold up for this hardware wait time and so it
could be that the response time required for T1 is missed.
If we use this mechanism (objects communicate via functions), which aims at single
threaded execution (as presented by the red line), we will be clogged when developing
software. So we need to introduce concurrency in executing functions. As presented in the
literature, for real-time systems also the complexity of the system decreases when multi-
threading is introduced. (refers to main loop and a lot of dependencies).
This mechanism can, however, be extended to multi-threaded execution easily as
presented on the next slide.

(introducing concurrency give some more complications: mutual exclusion problem, task
synchronization problem, producer/consumer problem)

Speaker Notes

Ton Kostelijk 19

The ‘g4event’ model (2/6)
• Synchronous: The action of calling F1

returns after F1’s body is executed. (e.g.
access to a diskdrive).
– Object O1’s call and body run on Thread T1.

• Need concurrency to be flexible, and prevent
idle time.

Ton Kostelijk 20

The ‘g4event’ model (3/6)

Active objects borrow a task from an Exec. Unit
Asynchronous execution

Object O1

F1

body

call
T1

T2

Q
Exec.Unit U

redirect

call

Ton Kostelijk 21

We introduce the notion of execution units in the system. An execution unit is
an object which encapsulates both a queue and a task. We have the same
situation as explained in the previous slide. So task T1 executes function F1
of object O1. Now since Object O1 needs concurrency, the object is named an
active object. An active object has a reference to an execution unit U. The
interface part of F1 redirects the call to an execution unit. The execution unit
puts the call in its Q and returns. T2 is scheduled and gets the message (call)
which is in the Q. It then calls the body of Object O1. Note here that this body
function is now executed on T2 and not on T1 anymore. When we have to
wait now for the hardware response, T2 is hold on for a while, but T1 is just
continuing its execution and so can reach its timing requirements.
So using this multi-threaded mechanism makes us happy when designing a
system to meet the timing requirements. We can say that active objects don’t
have a task of their own, but they just borrow one from an execution unit. By
this means we can design a parametrized architecture which is orthogonal on
the functional architecture view.

Speaker Notes

Ton Kostelijk 22

The ‘g4event’ model (4/6)

Objects O Exec.
Units U

Exec.
Params P

Ton Kostelijk 23

With this ‘g4event’ mechanism, we can create a parametrizable
execution architecture. All active objects contain a reference
(also named execution parameter) to an execution unit.
If this reference is null, we have the single threaded call. We
can also see that several active objects can be mapped to the
same execution unit or that an active object can change from
one execution unit to another execution unit while the system
is operating, just by adapting the execution parameters.
Now when we have specified such a parametrizable execution
architecture, the question is how can we use this.

Speaker Notes

Ton Kostelijk 24

The ‘g4event’ model (5/6)
• all active objects (Oi) contain a reference (Pi)

to an execution unit (Uj)
– if reference is NULL -> single threaded
– several Oi can be mapped to same Uj
– an Oi can be mapped to several Uj during run-

time
– reference = execution parameter

• execution architecture is parametrized

Ton Kostelijk 25

The ‘g4event’ model (6/6)
• Other issues for an event mechanism:

– point-to-point versus broadcasting
– push versus pull (subscription)
– synchronous versus asynchronous
– timer events (after, at, repeating, …)
– send(e), receive(e), process(e)

Ton Kostelijk 26

Overview of execution
architecture design steps

• Get an overview of all external functions /
events, and their timing requirements.
– Select set of critical scenarios

• Structuring: Identify potential active objects.

• Cohesion: Create object to exec unit mapping.
• Task prioritisation: Use RMA estimation.
• Tuning

Ton Kostelijk 27

Function, event, period, deadline.
• An active function has a body that may run

on a different thread, via event redirection.
• An event has a response, that may generate

other events (action flow)
• An event has a period
• The response of an event has a deadline

(<= deadline)

Ton Kostelijk 28

Overview of events (1/2)

Set Top Box
Satellite signal

User Input

Video

Audio

User Indication Smartcard

PC connection

LNB control

TransportStream
TS selection TS decoding &

descrambling

Content
Presentation

Sections

Audio/Vide
o decoding

Service Info

Entitlements

Smartcard

Graphics

EMMs only

Resident
Storage

Resident
Storage&RetrievalUser Input

User
Indications

Slave
CPU

Controlled by
CPU

User Input

User
Indications

 Application
 Control

Synchronisation

ECMs
EMMs

 SI

Timer
Control

Time
Trigger

PCR

sections

(serial) (serial)

LNB control

LNB

LNB
on dish

TS status (serial)

PES Stream

Satellite
signal

Teletext

Audio/Video
PES Stream

PES Stream

Video + OSD
mixing

EEPROM

A/V to TV

HW clock

Audio/Video
backend

Set Top Box

PC
communicatio

Characters (serial)

Tuner band

Tuner band
settings

Ton Kostelijk 30

Structuring step (1)
• Characteristics:

– local scope (developers)
– trade-off : synchronous/asynchronous

functions
– identify active objects
– one execution unit per active object

Ton Kostelijk 31

Mr. Hassan Gomaa has defined a design method for concurrent and RT systems. A
reference can be found in the paper and the CTT provides a course for this method. He
defines 2 steps.
In the first step a set of structuring criteria are used to assist the designer in structuring
a RT system into concurrent tasks. So these criteria assist in making the trade-off to
make a function synchronous or asynchronous. In this step the active objects are
identified and all execution parameters are unique.
After this first step, potentially a large number of small tasks are created in the system.
This means that the system complexity is high and a lot of task switches occurs,
resulting in reducing the performance. In the second step, a set of cohesion criteria are
used to assist the overall designer (or architect) in combining a number of execution
units together. As such the number of task switches is reduced and so the performance
ot the total system is increased. The execution units can be combined easily by letting
a number of execution parameters refer to the same execution unit. So a number of
objects borrow the same execution unit without changing the interface.
Note that the first step is done locally by the designers and the second step globally by
the architect.

Speaker Notes

Ton Kostelijk 32

Structuring step (2)
• GOMAA - CODARTS structuring criteria:

– I/O:
• active / passive = interrupt vs polling
• asynchronous device I/O
• periodic I/O: different freqs
• resource monitors: care for consistency

Ton Kostelijk 33

Structuring step (3)
• GOMAA - CODARTS structuring criteria:

– Internal:
• periodic functions
• asynchronous
• control (object following a state-transition diagram)
• user role (“sequential application”)

Ton Kostelijk 34

Cohesion step (1)
• Characteristics:

– global scope (architect)
– reduce task-switching overhead and memory

requirements by reducing the number of
execution units

– map active objects on the same execution unit
– one task per execution unit

Ton Kostelijk 35

Cohesion step (2)
• GOMAA - CODARTS cohesion criteria:

– temporal cohesion (= same priority)
• different actions from the same event
• actions with similar periods (when independent)

– sequential cohesion (= no interference)
– control cohesion (= no interference, exclusive calls)

Ton Kostelijk 36

Tuning step
• Do measurements and RMA(nalysis)
• (only) when the deadline is not met:

– either the processor is idle now and then, and you can
benefit more from concurrency:

• redo from cohesion onwards

– otherwize: speed-up critical processing part

Ton Kostelijk 37

Meeting timing requirements
!Up till now :

– parametrizable architecture via ‘g4events’
– used Gomaa to define execution units
flexibility and orthogonality is achieved

!But what about timing requirements?

Ton Kostelijk 38

Up till now, we have specified a parametrizable
execution architecture using the ‘g4event’ model. The
usage of this model is based on the method of Mr.
Hassan Gomaa during two steps.
These two techniques provides us an execution
architecture which is flexible and orthogonal on the
functional architecture view.
But the third goal is not yet met : what about
guaranteeing timing requirements ??

Speaker Notes

Ton Kostelijk 39

Meeting timing requirements (2)
RATE MONOTONIC ANALYSIS (RMA) :

• prioritization
– the shorter the event deadline, the higher the task

priority of the execution unit
• analyze and guarantee timing requirements

– FOCUS on system events and action flow, not on
tasks.

Ton Kostelijk 40

RMA provides design guidelines and real-time analysis techniques that are
based on a priority-based pre-emptive scheduling mechanism. Again some
references can be found in the paper.
RMA provides guidelines to map execution units on prioritized RTOS-
tasks. With the optimal priority assignment, the deadline-monotonic priority
assignment, the shorter the event deadline, the higher the task priorities.
Since in our model, there is only one task for an execution unit, the terms
execution unit and task are synonyms in the context of RMA.
Furthermore RMA provides a technique to analyze and guarantee timing
requirements. Note the focus for RMA lies on events and not on tasks.
Let us take a closer look to these guidelines via an example.

Speaker Notes

Ton Kostelijk 41

Meeting timing requirements (3)

Sample situation

T1
F11

e1

T3F12
F22

ev12

T2
F21 ev22

e2

action flow e1

action flow e2

response e2

response e1

Ton Kostelijk 42

I used a simplified presentation here :
– objects not shown anymore, only functions.
– indirections not shown anymore, directly the bodies.
– U = tasks (q’s not shown)

For a given system, one situation is shown here :
– A system is triggered by events, either external to the system (e.g.

hardware trigger e1) or internal (e.g. timer e2), named a system event.
– To respond to a system event, a number of execution units are activated in

some order. The communication between these execution units is handled
by g4events (ev12 and ev22). This communcation is named the action flow
for a certain system event -> red lines.

– Each system-event has a period and a deadline. The period is the minimum
distance between two same system-events. The action flow which is
triggered by the system event must be completed (response time) before a
certain time, named the deadline.

Speaker Notes

Ton Kostelijk 43

Real-time scheduling theory,
utilization bound

• Set of n tasks with periods T_i, and process
time P_i, load u_i = P_i / T_i,

• Schedule is at least possible when tasks are
independent and:

• 1.00, 0.83, 0.78, 0.76, …. log 2 = 0.69.









−≤≡ ∑ 12

1
n

ii nuLoad

Ton Kostelijk 44

Real-time scheduling theory, issues
• Note the demand of independence, otherwise

extra time must be included in the process
times. For example:

• Shared resources (priority inversion) can a
snag -> extra parameter, blocking time.

• Support from tools (performax, etc.).

Ton Kostelijk 45

Meeting timing requirements (4)
Situation table

Specification Design
& Test

System
event

Period Dead-
line

E1 20 5

E2 15 10

Ton Kostelijk 46

Meeting timing requirements (5)
RMA : Situation table

Requirements Design and Test

• sys events
• period
• deadline

• action flow
• execution unit
• priority
• (shared resource)
• process time

• response time

Calculated (based on theorems)

compared

Ton Kostelijk 47

RMA puts the essence of a real-time situation in a Situation
Table. This table is filled in by the requirements engineer/
architect. We see two big parts in this table. A first part can be
filled in during the requirements phase : system events with
their periods and deadlines are captured. The second part
describes the action flow, execution units, priorities and shared
resources which come out of the design phase. Furthermore
process times are measured during testing.
RMA then calculates the response time for each system event,
taking into account pre-emption and blocking. This response
time is then compared to the deadline and if lower, the timing
requirement for that system event is met. RMA further
calculates the total CPU usage.

Speaker Notes

Ton Kostelijk 48

Results for G+4
"experiences of G+4 STB applying 3

techniques : g4event, Gomaa, RMA
• overhead ‘g4events’ is neglectable (<1%)
• after ‘structuring’ (Gomaa) -> 75 execution

units
• after ‘cohesion’ (Gomaa) -> 21 ex. units
• total effort: 3% (analysis & measurement)

– << MIA analysis & design effort

Ton Kostelijk 49

To conclude, some experiences we had in the G+4 Set Top
Box project applying the three techniques : g4event model +
Gomaa + RMA.
The ‘g4event’ model provides a parametrizable execution
architecture and so supports the goal of being flexible and
orthogonal to the functional architecture.
The overhead of the g4events is neglectable: less then 1%
regarding a context switch.
The criteria of Gomaa give a good technique of applying the
g4event model in the real world. Within the G+4 Set Top Box
project, after structuring step we had 75 U and after the
cohesion step only 21 U were left.

Speaker Notes

Ton Kostelijk 50

Shared resources
• Example: memory, devices
• How to implement mutual exclusion:

– disable interrupts (better: partly) or
– disable task switching (even better: partly)
– but what about real-time deadlines?
– even better ...

Ton Kostelijk 51

Shared resources (2)
• How to implement mutual exclusion (2)

– semaphores
• risk of priority inversion

– ex: small kitchen, bad temper, dishwashing, a fridge
– solution: priority inheritance

• use extra “blocking time” in addition to processing
time for the relevant events

• Risk of deadlocks

– thread decoupling: with “job queue”
• overhead comparable with semaphores

Ton Kostelijk 52

Shared resources (3)
deadlocks

• Result of mutual exclusion that contain each
other.

• Example:
F1

F2

Resource 2

Resource 1

Ton Kostelijk 53

Shared resources (4)
deadlocks prevention

• Order all modules based on their position in the
entire system (e.g., logical devices are all placed
lower than service modules), based on usage
structure (which should form an acyclic graph!)

• Module of order N is only allowed to synchro-
nously call methods from modules of order <N

• This means that ‘down’ calls may be synchronous,
but ‘up’ calls must be asynchronous (decoupled)

Ton Kostelijk 54

Shared resources (5)
deadlocks prevention

• Absence of deadlocks is guaranteed because
semaphores are always passed (locked, ‘P’) in the
same order, i.e., the order given by the module
ordering

• Now modules can implement their own (local)
protection schemes while guaranteeing global
absence of deadlocks.

• Yes, a specialized task (thread decoupling) works
as well!

• Critical sections must be kept short.

Ton Kostelijk 55

Priorities: starvation
• Actually this is impossible when applying

RMA with hard deadlines.
• However, an example:

– a monkey sitting on a keyboard

Ton Kostelijk 56

Summary (1/2)

#identify the real-time situations to be analyzed
$identify system events with Pi & Di
%create situation tables using RMA

⇒ guestimate process times (advanced)

&determine action flows using Gomaa:
identify and merge execution units

steps

Ton Kostelijk 57

Creating a parametrizable execution architecture is done in several steps
during the software development lifecycle. Starting with a mechanism
which supports this parametrization, in a first step we analyze the system to
be developed on timing requirements and identify the real-time situations
which are criticaland are to be analyzed. Note this step is done already in
the requirements phase, so very early in the project.
For each situation the system events with their periods and deadlines are
identified and a situation table according RMA is created. Note that until
here no design has to be created yet. Already process times can be
guestimated and a first analyze can be covered, f.I. to discuss with your
product management.
In the design phase we determine the actions flows for each system event
using the criteria of Gomaa in two steps : identifying and merging the
execution units using the parametrizable ‘g4event’ model.

Speaker Notes

Ton Kostelijk 58

&identify shared objects, prevent deadlocks
with global analysis, rules

'determine deadline monotonic priorities
⇒ estime process times (advanced)

(measure process times
)calculate response times and compare (use a

tool)
*corrective actions and iterate

Summary (2/2)
steps

Ton Kostelijk 59

Together with applying the Gomaa criteria we identify the shared data
objects. These objects can cause blocking times for RMA.
We then continue with determining the deadline monotonic priorities for
each execution unit.
The only missing issue in the situation table of RMA is the process time.
This process time can now be estimated and again an analyze can cover a
more detailled view on the timing requirements. Out of this analysis we can
already steer problems during the design and implementation phase, so
before the test phase.
Then we measure process times and fill them in the situation table. RMA
then calculates the response times for the system events and compares them
to their deadlines.
We can do corrective actions if deadlines are missed and iterate this process
again by adapting the situation table according the new implementation.

Speaker Notes

Ton Kostelijk 60

Conclusions and remarks (1/3)
• Gomaa and g4events provide hierarchy in

work (local versus global)
• performance improvements without large

changes
• performance predictions with RMA are useful
• Lower SW levels: true real-time
• Deadlocks have been a major problem

Ton Kostelijk 61

Gomaa and the g4event provide a flexible way to design an execution
architecture. In the first step designers can work locally and in the second
step the architect works on a global base by applying the techniques
provided by the g4event model and Gomaa.
Performance improvements could be done easily by changing some
parameters of the g4event model.
Preformance predictions are useful using RMA. Several alternatives can be
analyzed without implementing them, so that choosing between these
alternatives becomes easy.
Applying the 3 techniques gives a stable process throughout the software
development lifecycle, but starting already very early in the project gives
you an even more stable process so that you detect earlier missing timing
requirements or requirements which can’t be met to negotiate with your
product management.

Speaker Notes

Ton Kostelijk 62

Conclusions and remarks (2/3)
• Stable process (management context)
• Start during requirements phase
• Be pragmatic and don’t overdue
• The understanding counts, not the

administration or tools (but do document)

Ton Kostelijk 63

I would like to end with thanking the IST (information and
software technology centre) for their support using Gomaa and
in specific RMA to be very useful techniques in creating a
parametrizable execution architecture.
For those of you who want to know more about experiences
using RMA in projects, there is a special interest group this
evening covering the Rate Monotonic Analysis in more detail
together with a market place where you can experiment with
the technique. So check in for SIG8.
Thank you.

Speaker Notes

Ton Kostelijk 64

Conclusions and remarks (3/3)
• Thanks to IST for support (L. Steffens)
• Note that interrupt routines can be modelled

as independent tasks as well!
• LBNL: Focus on requirements, events, and

actionflow, not on tasks or threads.

