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Content

• Focus on what we did from ± 2000-2005
– every project a small improvement

• Drivers & architecture context
• Test environments
• Test driver tools
• Results checking & coverage
• Analyzability
• Automatic test scripts

• short demo
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Drivers

• Very high requirements for product quality
– CV systems are interventional

• Continuous quality in the archive
– "always a working system"
– Continuous development & test cycles

• Testing and bug fixing consumes more and more time
– Especially regression:

• Test systems are expensive and scarce resources
– do as much as possible on developer PC

Existing software Delta
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Architectural context (1)
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Architectural context (2)

• Very strict interfacing between 
applications and UI:
– Commands
– UIModel (observer)
– UIMessages (observer)

• Rationale: system has many 
different UI's

UI (client)

Application
(server)

C
om

m
an

d

U
IM

od
el

U
IM

es
sa

g e



Philips Medical Systems, Nico van Rooijen, 18-9-2006 7

Test environments

• Test harness
– Classic setup

• Standard test environments:
– LIT (developer PC, VMWare)
– Villa Volta
– BOK
– OTM

Software 
under test

driver

stub

More realistic; 
More expensive

l
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Standard test environments: LIT

• Developer PC; 
VMWare

• No hardware
• Simple stubs / 

simulators (e.g. 
return callbacks on 
asynchronous calls)
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Standard test environments: Villa Volta

• Target PC 
hardware

• Some peripheral 
hardware
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Standard test environments: BOK/OTM

• Ever more realistic 
(and expensive)

• OTM has real 
geometry
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Test client GUI's 

• Given the architecture almost a trivial step
• Run side by side with other UI's on a running system

– start/stop at any time

• Also available for technical layer

Acquisition

TSM AGD
Test client 

GUI

Generator

Test client 
GUI
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Automatic test tool

• Very simple tool
• Run side by side with other UI's
• Record/playback all commands (originating from any UI) of all 

applications to/from  simple script text file 
• Can run in any of the standard test environments!!!
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Discussion: module tests

• We started doing module tests using the test harness.
– Lots of maintenance, main causes: a) large fan out of interfaces b) each 

module own implementation of test environment c) lots of poorly 
designed testcode

– Still many problems during integration ("correct" modules do not yield 
correct end-user requirements)

– Conclusion: only efficient for some modules
• More succesful approach (Focus of presentation):

– use standard test environments
– Use and extend Automatic Test Tool
– Focus on testing end-user requirements
– Add test interfaces to the application to be able to reach sufficient 

coverage
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Results checking

• Simple additions to Test Tool:
– Check UIModel item for value
– Check for UIMessage

• Synchronization
– Wait for UI model item to reach some value (losing timing dependencies!!)

• Making available some internals for checking
– E.g. state of most important state machines
– Using UIModel, so available on Test GUI & Automatic Test Tool

• Discussion: value of indirect results (e.g. x-ray on UIModel item)
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Enhancing coverage

Operation of Acquisition application is highly parameterized by:

• procedures ("acquisition recipies") in the Database (200 params)
– Preset procedures are delivered by Philips, but are modified in the field
– Parameter combinations need to be validated against each other and the configuration. 

Validation itself needs to be tested.
– Huge parameter space

• Available licenses
– Usually only the "full options" situation is tested during everyday testing. Creating 

different license files is cumbersome.
– Many combinations possible

• Configuration
– Limited amount (so far …..)

• How to get good coverage?
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Enhancing coverage (2)

• Procedure parameters:
– Limited number of test 

procedures in DB
– Test interface to create 

"variations on a theme" + 
activate modified procedure 
without reload from Database

– Use interface from test client 
GUI & Automatic test tool

• Licensing is done analogous
• Configuration not solved yet

Procedure
Database

Acquisition

Locally
cached

parameters
Software 
module
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Select
Procedure()

LoadProc
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Test interfaces
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Enhancing coverage (3)

• Avoid needing shutdown/restart for reloading new 
parameters 
– takes lot of time, makes manual testing annoying

• Rule: all parameters are re-evaluated at a procedure 
selection
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Enhancing coverage (4)

• Generate stimuli from 
other then UI sources: 
events from the technical 
layer, e.g.:

– Door open
– Tube too hot

• Two possibilities:
– Make more sophisticated 

simulators with test 
interface

– Generate internally

• Last possibility chosen. Can 
also be used in complete 
system
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Analyzability

• What if a problem is found (either by automatic or manual 
testing)?

• We started by using the debugger with dissatisfying results:
– a) always needing to reproduce, takes time b) what exactly happened? 

c) intermittent problems d) breakpoint wrong --> next cycle
– Consequence: test systems occupied by debugging developers

• We set ourselves the goal:
– Analyze 80% of problems a) offline b) without reproducing
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Analyzability (2)

• We had logging in Windows 
event log

– Meant for field service 
engineers

– Global overview, lack of 
detail, too slow mechanism 

• Added simple "tracing"
– Simple and efficient (>20 

traces per ms) mechanism, 
writes to text files

– Meant for development  
debugging

– Most tracing always on!
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Analyzability (3)

Design trace file contents: use design knowledge
– Get as much as possible valuable info against little 

performance penalty

• Outgoing/incoming trafic to/from outside (including values of variables)
• Windows message pump
• Values of used procedure parameters and licenses
• Internal state transitions
• Critical sections, locks, windows events
• For each trace: Thread ID, time stamp (enables performance analysis)

• OO: give objects instance names to know who traces
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Analyzability (4)

Results:

• Goal reached, mayor efficiency improvement
• Way of working completely changed

– Tester just saves data, submits PR, continues testing
– Took time to get everybody on board, now nobody wants 

to go back

• Very strong combination with automatic testing
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Discussion: testability in production code

• Not everybody liked the idea to keep test interfaces 
and tracing in the production code.

• However: 
– never had a problem with this
– Release the system as it was tested
– Have capabilities in the field

• We keep it in
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Managing test scripts

• OK, now we have some nice Automatic Test Tool, 
test interfaces, analysis capabilities. Let's make some 
scripts!

• Oops: Test scripts themselves became a maintenance 
burden

• Therefore, we felt the need to:
– Clearly organize the scripts
– Document what we have
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Managing test scripts: organizing

3 levels of test scripts:
• Utility

– Reusable "sub"-scripts of actions/checks 
• Testcase

– Create their own preconditions, can be executed in any 
order

– Composed by executing Utility scripts
• Batch

– Sequence of testcase scripts
– Long/short batches
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Managing test scripts: documenting

• We had a good pool of manual test cases
• Simple decision: one-to-one correspondence of 

Testcase scripts with manual testcases in the TS
• Some manual checks could not be automated (yet). 

Therefore two modes of execution are supported by 
Automatic Test Tool:
– Attended: scripts pauses and prompts for manual check
– Unattended: scripts only performs automatic checks
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Facilitating to run automatic test batches

• Some tooling was created to:
– Easily setup test systems to run test batches
– Save all test results (test log, Windows event log, trace 

files) on central server
– Easily get an summary of the test results + starting point 

for analysis in case of failures
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Pyramid of needs

Test environments

Execution
+ exceptions

Result
Checking

Pre/
Context Analysis

Test GUI Automatic
Test driver

Testcases
Testscripts

and organization

Run/
Analyze 
batches

Test support in SUT

Environment for SUT

Tools to drive SUT

Tools to facilitate
efficient run & analyze 
automatic Test batches
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Current status

• We have come a long way
• No post without running the automatic batches
• Every developer runs batches on developer PC while 

developing
• Continuous improvement each project

– Investments pay off!
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Short demo


