
Confidential -- © 2006 Philips Medical Systems Nederland B.V.

Design for testability in CardioVascular
x-ray acquisition control software

Nico van Rooijen - software architect MR

Philips Medical Systems, Nico van Rooijen, 18-9-2006 2

Content

• Focus on what we did from ± 2000-2005
– every project a small improvement

• Drivers & architecture context
• Test environments
• Test driver tools
• Results checking & coverage
• Analyzability
• Automatic test scripts

• short demo

Philips Medical Systems, Nico van Rooijen, 18-9-2006 3

Philips Medical Systems, Nico van Rooijen, 18-9-2006 4

Drivers

• Very high requirements for product quality
– CV systems are interventional

• Continuous quality in the archive
– "always a working system"
– Continuous development & test cycles

• Testing and bug fixing consumes more and more time
– Especially regression:

• Test systems are expensive and scarce resources
– do as much as possible on developer PC

Existing software Delta

Philips Medical Systems, Nico van Rooijen, 18-9-2006 5

Architectural context (1)

Acquisition

Generator
Detector

Collimator

IP/IS
Geometry

Viewing Printing
Archiving

TSM AGD …

T
ec

hn
ic

a l
Se

rv
ic

es
A

pp
lic

at
i o

n
La

ye
r

U
I

La
ye

r

Database
Sequencer

Note:
all separate
processes

Philips Medical Systems, Nico van Rooijen, 18-9-2006 6

Architectural context (2)

• Very strict interfacing between
applications and UI:
– Commands
– UIModel (observer)
– UIMessages (observer)

• Rationale: system has many
different UI's

UI (client)

Application
(server)

C
om

m
an

d

U
IM

od
el

U
IM

es
sa

g e

Philips Medical Systems, Nico van Rooijen, 18-9-2006 7

Test environments

• Test harness
– Classic setup

• Standard test environments:
– LIT (developer PC, VMWare)
– Villa Volta
– BOK
– OTM

Software
under test

driver

stub

More realistic;
More expensive

l

Philips Medical Systems, Nico van Rooijen, 18-9-2006 8

Standard test environments: LIT

• Developer PC;
VMWare

• No hardware
• Simple stubs /

simulators (e.g.
return callbacks on
asynchronous calls)

Acquisition

Generator

Detector

Collimator

IP/IS
Geometry

Viewing Printing
Archiving

TSM AGD
Test client

GUI

T
ec

hn
ic

al
Se

rv
ic

es
A

pp
lic

at
io

n
La

ye
r

U
I

La
ye

r

Database
Sequencer

Philips Medical Systems, Nico van Rooijen, 18-9-2006 9

Standard test environments: Villa Volta

• Target PC
hardware

• Some peripheral
hardware

Acquisition

Generator

Detector

Collimator

IP/IS
Geometry

Viewing Printing
Archiving

TSM AGD
Test client

GUI

T
ec

hn
ic

al
Se

rv
ic

es
A

pp
lic

at
io

n
La

ye
r

U
I

La
ye

r

Database
Sequencer

Philips Medical Systems, Nico van Rooijen, 18-9-2006 10

Standard test environments: BOK/OTM

• Ever more realistic
(and expensive)

• OTM has real
geometry

Acquisition

Generator

Detector

Collimator

IP/IS
Geometry

Viewing Printing
Archiving

TSM AGD
Test client

GUI

T
ec

hn
ic

al
Se

rv
ic

es
A

pp
lic

at
io

n
La

ye
r

U
I

La
ye

r

Database
Sequencer

Philips Medical Systems, Nico van Rooijen, 18-9-2006 11

Test client GUI's

• Given the architecture almost a trivial step
• Run side by side with other UI's on a running system

– start/stop at any time

• Also available for technical layer

Acquisition

TSM AGD
Test client

GUI

Generator

Test client
GUI

Philips Medical Systems, Nico van Rooijen, 18-9-2006 12

Automatic test tool

• Very simple tool
• Run side by side with other UI's
• Record/playback all commands (originating from any UI) of all

applications to/from simple script text file
• Can run in any of the standard test environments!!!

Acquisition

Other UI's
Automatic
Test Tool

Re
co

rd
 co

mman
ds

Pla
yb

ac
k

Script
File

Philips Medical Systems, Nico van Rooijen, 18-9-2006 13

Discussion: module tests

• We started doing module tests using the test harness.
– Lots of maintenance, main causes: a) large fan out of interfaces b) each

module own implementation of test environment c) lots of poorly
designed testcode

– Still many problems during integration ("correct" modules do not yield
correct end-user requirements)

– Conclusion: only efficient for some modules
• More succesful approach (Focus of presentation):

– use standard test environments
– Use and extend Automatic Test Tool
– Focus on testing end-user requirements
– Add test interfaces to the application to be able to reach sufficient

coverage

Philips Medical Systems, Nico van Rooijen, 18-9-2006 14

Results checking

• Simple additions to Test Tool:
– Check UIModel item for value
– Check for UIMessage

• Synchronization
– Wait for UI model item to reach some value (losing timing dependencies!!)

• Making available some internals for checking
– E.g. state of most important state machines
– Using UIModel, so available on Test GUI & Automatic Test Tool

• Discussion: value of indirect results (e.g. x-ray on UIModel item)

Script
File

Automatic
Test Tool

Application
(server)

Ex
ec

ut
e

C
om

m
an

d

C
he

ck
 U

IM
od

el

C
he

ck
 U

IM
es

sa
ge

Test
Log

Philips Medical Systems, Nico van Rooijen, 18-9-2006 15

Enhancing coverage

Operation of Acquisition application is highly parameterized by:

• procedures ("acquisition recipies") in the Database (200 params)
– Preset procedures are delivered by Philips, but are modified in the field
– Parameter combinations need to be validated against each other and the configuration.

Validation itself needs to be tested.
– Huge parameter space

• Available licenses
– Usually only the "full options" situation is tested during everyday testing. Creating

different license files is cumbersome.
– Many combinations possible

• Configuration
– Limited amount (so far …..)

• How to get good coverage?

Philips Medical Systems, Nico van Rooijen, 18-9-2006 16

Enhancing coverage (2)

• Procedure parameters:
– Limited number of test

procedures in DB
– Test interface to create

"variations on a theme" +
activate modified procedure
without reload from Database

– Use interface from test client
GUI & Automatic test tool

• Licensing is done analogous
• Configuration not solved yet

Procedure
Database

Acquisition

Locally
cached

parameters
Software
module

Main

ModifyParameter()

SelectProcedure()

ActivateProcedure()

Select
Procedure()

LoadProc
FromDB()

Test interfaces

Test procedures

Philips Medical Systems, Nico van Rooijen, 18-9-2006 17

Enhancing coverage (3)

• Avoid needing shutdown/restart for reloading new
parameters
– takes lot of time, makes manual testing annoying

• Rule: all parameters are re-evaluated at a procedure
selection

Philips Medical Systems, Nico van Rooijen, 18-9-2006 18

Enhancing coverage (4)

• Generate stimuli from
other then UI sources:
events from the technical
layer, e.g.:

– Door open
– Tube too hot

• Two possibilities:
– Make more sophisticated

simulators with test
interface

– Generate internally

• Last possibility chosen. Can
also be used in complete
system

Acquisition

Software
module

Event sink

proxy

Technical
service

Internal events

Test
Command

SendEvent

Trigger event

Execute

Philips Medical Systems, Nico van Rooijen, 18-9-2006 19

Analyzability

• What if a problem is found (either by automatic or manual
testing)?

• We started by using the debugger with dissatisfying results:
– a) always needing to reproduce, takes time b) what exactly happened?

c) intermittent problems d) breakpoint wrong --> next cycle
– Consequence: test systems occupied by debugging developers

• We set ourselves the goal:
– Analyze 80% of problems a) offline b) without reproducing

Philips Medical Systems, Nico van Rooijen, 18-9-2006 20

Analyzability (2)

• We had logging in Windows
event log

– Meant for field service
engineers

– Global overview, lack of
detail, too slow mechanism

• Added simple "tracing"
– Simple and efficient (>20

traces per ms) mechanism,
writes to text files

– Meant for development
debugging

– Most tracing always on!

Application

UI

Technical
Service

Windows
Event Log

Trace
File

Trace
File

Trace
File

Philips Medical Systems, Nico van Rooijen, 18-9-2006 21

Analyzability (3)

Design trace file contents: use design knowledge
– Get as much as possible valuable info against little

performance penalty

• Outgoing/incoming trafic to/from outside (including values of variables)
• Windows message pump
• Values of used procedure parameters and licenses
• Internal state transitions
• Critical sections, locks, windows events
• For each trace: Thread ID, time stamp (enables performance analysis)

• OO: give objects instance names to know who traces

Philips Medical Systems, Nico van Rooijen, 18-9-2006 22

Analyzability (4)

Results:

• Goal reached, mayor efficiency improvement
• Way of working completely changed

– Tester just saves data, submits PR, continues testing
– Took time to get everybody on board, now nobody wants

to go back

• Very strong combination with automatic testing

Philips Medical Systems, Nico van Rooijen, 18-9-2006 23

Discussion: testability in production code

• Not everybody liked the idea to keep test interfaces
and tracing in the production code.

• However:
– never had a problem with this
– Release the system as it was tested
– Have capabilities in the field

• We keep it in

Philips Medical Systems, Nico van Rooijen, 18-9-2006 24

Managing test scripts

• OK, now we have some nice Automatic Test Tool,
test interfaces, analysis capabilities. Let's make some
scripts!

• Oops: Test scripts themselves became a maintenance
burden

• Therefore, we felt the need to:
– Clearly organize the scripts
– Document what we have

Philips Medical Systems, Nico van Rooijen, 18-9-2006 25

Managing test scripts: organizing

3 levels of test scripts:
• Utility

– Reusable "sub"-scripts of actions/checks
• Testcase

– Create their own preconditions, can be executed in any
order

– Composed by executing Utility scripts
• Batch

– Sequence of testcase scripts
– Long/short batches

Philips Medical Systems, Nico van Rooijen, 18-9-2006 26

Managing test scripts: documenting

• We had a good pool of manual test cases
• Simple decision: one-to-one correspondence of

Testcase scripts with manual testcases in the TS
• Some manual checks could not be automated (yet).

Therefore two modes of execution are supported by
Automatic Test Tool:
– Attended: scripts pauses and prompts for manual check
– Unattended: scripts only performs automatic checks

Philips Medical Systems, Nico van Rooijen, 18-9-2006 27

Facilitating to run automatic test batches

• Some tooling was created to:
– Easily setup test systems to run test batches
– Save all test results (test log, Windows event log, trace

files) on central server
– Easily get an summary of the test results + starting point

for analysis in case of failures

Philips Medical Systems, Nico van Rooijen, 18-9-2006 28

Pyramid of needs

Test environments

Execution
+ exceptions

Result
Checking

Pre/
Context Analysis

Test GUI Automatic
Test driver

Testcases
Testscripts

and organization

Run/
Analyze
batches

Test support in SUT

Environment for SUT

Tools to drive SUT

Tools to facilitate
efficient run & analyze
automatic Test batches

Philips Medical Systems, Nico van Rooijen, 18-9-2006 29

Current status

• We have come a long way
• No post without running the automatic batches
• Every developer runs batches on developer PC while

developing
• Continuous improvement each project

– Investments pay off!

Philips Medical Systems, Nico van Rooijen, 18-9-2006 30

Short demo

