Strategy In
architecting

Ronald Fabel
Océ R&D

October 4, 2005

P R
@cé}

S

Statement

m Dana Bred emeyer (www.bredemeyer.com)
m Architecture: Translation of strategy into technology
m Architect: Minimalist

® One well formulated strategy is worth
more than 1000 quantifiable
requirements.

.’/.-" "-n;\k
f \
0Ce
! {
I"'\. _...I

T

Océ products

Description of the project and product
Software bottleneck

Software reference architecture in 5 steps

m Discussion

Océ products

*Archiving
*\Workflow management
eDocument management

VarioPrint 2090

Project organization

m Function groups
m Paper trays
Registration Module

Finishing m Risk areas

Receiving = l.e: acquisition of print-head
Cold process -

Warm process

Scanning

Document feed
Image processing
m Total construction
m Informatics (sw architecture, DME, behavior)
m Electronics (power, energy, technology)
m Mechanics (timing, construction)
m Procede (print/copy quality)

VarioPrint 2090

Warm process
Océ Copy Press

scanner

proces

Image processing

Controller

finisher

Bottleneck (1998)

Experience hard to get

Introduction of ROOM

Prototype software in C

Change of product profile

SPIl and more formal procedures
Attention for requirement management
Rise of software architecting

Many detailed requirement documents

Modularity as a goal

Endless break-down of software components

Layering and abstraction

Every engineer is an architect

Performance problems

Only software engineers occupied with problem solving

GC@ Basisfor Software Reference Architecture

Software architecture 1

B Page scanners and page printers modules

Applications

g

Copier Controller

e 1L

Embedded Scanner Embedded Printer
Controller Controller
Prin
Seannen /o Embedded Image Processing
Controller

Physical image Scanner i‘> Image Processing i‘> Printer
layer

M Image data path non embedded
5 sysem

Software architecture 2 (page

printer)

B Usage circumstance
m Development functions

__

' managers

_ Productlvny Error handlin Informatlon Power
lagnostics planning orna 'g handlmg management

"""""""""""""""""""""" hgper----- ﬁ/
1[PIM
v Process Z_
B : |RegMod
1P L e L
I N— CRU
inisher

A 9
7 | mage position
6cd

Example status manager

m Not “generic” but “Océ generic”

on
— Error handling
Service
defect) off)
idle
Power regulations
)L low power Off>
Print -
Production

Software architecture 3

B Support of multi-disciplinary communication
m Behavioural procedures such as transport of a sheet
m Mechatronic devices such as Z registration unit

separation
of sheets gathering of delivery
from the pInCh / sheets in a set Of sets
stack *, sheet

i ’ ’l‘ "

stack stack et| :)
e sheet _/
::> Senso lmaglng switch or transport direction
joint

oceé Devices

Software architecture 4

® “Lean and mean”
m modularity with a purpose
m layering with a purpose
m dynamic configurability with a purpose

m Reduction of number of objects
m Reduction of communications overhead

1i
REOGORT R N

m Reduction of objects and lines of code /

[.4.] T

m A reduction of 80% ‘
in the registration =
module

\ _,.-f VarioPrint 205 &4 Duplex Tieek- 5.136 Sgebid: 0%

Software architecture 5

® Timing Backbone

m Time triggered architecture for hard real-time functions

m Distributed deployment along the line of functions to
support scalability in a development phase and integration
In a engineering phase

m Performance is under control at each stage of the project

Reference architecture results

(2005)

Focus on multi-disciplinary innovation

No bottleneck in development nor engineering
Successful reuse of software components

SW community ‘owns’ the timing and behaviour

N
N
N
N
m Keep up with fast hardware roadmaps

Statement

® One well formulated strategy is worth
more than 1000 quantifiable
requirements.

m Strategy titles:

m “ Make the usage circumstances visible ”

s “ Embedded means ‘lean and mean’ “

s “ Time and performance backbone *

m " Mechanical engineer should understand the top

level software design “
— = “ Modularity needs to serve a purpose “

