
Incremental functionality
Visitor as an

Architectural Pattern

Eddie.Szulc@Sioux.nl

Contents

! Domain overview
! Problem description
! Visitor Pattern and application
! Benefits and drawback
! Other examples

UMTS: Third Generation GSM

Signal flow

! Upstream & Downstream
! Antenna interface
! Filtering
! Modulation & demodulation
! A/D & D/A
! Encoding & decoding
! ATM interface

Signal flow block diagram

Radio Base Station processor structure

! Main Processor (cluster)
! Multiple Board Processors

Board Processor

! Hardware devices
! Mix of DSPs, ASICs,

FPGAs

! General software
! Operation &

Maintenance
! Resource and

functionality handling
! Specific software

! Per device

Architectural requirements

! Handle a mix of traffic (voice, circuit-
switched and packet-data services)
without hardware reconfiguration

! Different network structures
! Redundancy

! Modular design, software configurable
! Scalable architecture and easy to

expand

Dynamic resource allocation

Project characteristics

! 1,000 man
! Multiple layers of integration
! Incremental functionality

! General and specific

! Incremental BP structure
! New devices
! New configurations

! Functionality and structure changing at
different times

Functionality matrix

! Few types, many functions

DSP FPGA ASIC

initialise X X X

test X X X

configure X X X

etc X X X

Visitor structure top level

! Client asks Visitor to visit Structure
! Structure consists of elements
! Each Element offers itself to the Visitor

Client

Structure Visitor

Element

**

Visiting a structure

A
accept(Visitor)

B
accept(Visitor)

Visitor

Init
visitA(A)
visitB(B)

Stop
visitA(A)
visitB(B)

ElementStructure
accept(Visitor)

**

accept(init) a2->accept(init) init->visitA(a2)

b1->accept(init) init->visitB(b1)

a1->accept(init) init->visitA(a1)

High-level structure

ManagerSet Board FunctionSet

BoardProcessor

! BoardProcessor is the Client
! Board is the Structure
! FunctionSet and ManagerSet are both sets

of Visitors

Board structure

<State>

Dsp Uac

Board

**

HardwareUnit FunctionalUnit

HardwareGroup

1

**

CompositeHardwareUnit **
**

Fpga Rarec DecAsic

all

1

children

Dem

Functions

! Visualisation (LEDs)
! Fault handling
! Measurement handler
! Test handler
! Configuration handler
! Device handler
! etc.

Managers

! Managers
! Measurement manager
! Test manager
! Configuration manager
! Device manager
! Resource manager

! Responsibilities
! Check if application is in the correct state
! Has enough processing resources available
! Appropriate functionality to handle the signal
! Keeping track of the available functionality

Benefits 1/2

! Add functionality without modifying element
classes
! Cheap and easy
! Avoid pollution of classes with disjoint operations
! Relevant functionality per application for shared

structures
! Element classes not related by inheritance
! Visitors can accumulate state transparently

! Grouping of related functionality
! Encapsulation of functionality
! Optimisation of each function (+ inheritance)
! Easy to change algorithm
! Related to Aspect-Oriented Programming

Benefits 2/2

! Separation of functionality and structure
! Separate development
! Incremental functionality

! Not necessarily OO
! Can be implemented in non-OO languages

Drawbacks

! Loss of encapsulation
! Element type and operations are separated
! Visitor may need internal information from

element

! Adding a new Element type affects all
Visitors
! All Visitors may be extended

! Changing the Element types is costly
! Interface to all Visitors must be redefined

! Double-dispatch
! Dependence on both Visitor and Element types
! Run-time binding

Example uses

! Graphical editors:
! Icons: add, remove, modify, open, manipulate

! Compilers and interpreters
! Syntax trees: type checking, optimisation,

pretty-printing, metrics
! Dynamic structure

! Structure changes at run-time
! Structure traversal depends on current result

! Component
! Configurable HW or SW components
! 3D virtual worlds

! Composite
! consider using Visitor, too

Conclusion

! Visitor can be used as an architectural pattern
! To control functional extensibility
! To separate structure from functionality
! To encapsulate functionality

! Visitor was a good solution for the problem
! Was not difficult to implement
! Simplified adding and changing functionality

