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é;}) Signal flow { &

" Upstream & Downstream
= Antenna interface
= Filtering
= Modulation & demodulation
= A/D & D/A
= Encoding & decoding
= ATM interface




) Signal flow block diagram
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" Main Processor (cluster)
" Multiple Board Processors
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= General software
= Qperation &
Maintenance

= Resource and
functionality handling

" Specific software
= Per device

Hardware (DSFE ASIC, etc.)



" Handle a mix of traffic (voice, circuit-
switched and packet-data services)
without hardware reconfiguration

® Different network structures
" Redundancy

" Modular design, software configurable

" Scalable architecture and easy to
expand
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Project characteristics A

= 1,000 man
" Multiple layers of integration
" Incremental functionality

= General and specific

® |ncremental BP structure
= New devices
= New configurations

" Functionality and structure changing at
different times
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" Few types, many functions

DSP FPGA ASIC
Initialise X X X
test X X X
configure X X X
etc X X X




® Client asks Visitor to visit Structure
B Structure consists of elements
® Each Element offers itself to the Visitor

Client
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Structure Visitor
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% Visiting a structure T
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Structure Element Visitor
accept(Visitor)

A B Init Stop
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® BoardProcessor is the Client
® Board is the Structure

" FunctionSet and ManagerSet are both sets
of Visitors

BoardProcessor

ManagerSet Board Function Set




) Board structure {
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Functions

" Visualisation (LEDs)
" Fault handling

" Measurement handler
" Test handler

" Configuration handler
" Device handler

" etc.




Managers

" Managers
= Measurement manager
= Test manager
= Configuration manager
= Device manager
» Resource manager

" Responsibilities
= Check if application is in the correct state
= Has enough processing resources available
= Appropriate functionality to handle the signal
» Keeping track of the available functionality




@} Benefits 1/2

= Add functionality without modifying element
classes
= Cheap and easy
= Avoid pollution of classes with disjoint operations

» Relevant functionality per application for shared
structures

= Element classes not related by inheritance
= Visitors can accumulate state transparently

" Grouping of related functionality
= Encapsulation of functionality
= Optimisation of each function (+ inheritance)
= Easy to change algorithm
= Related to Aspect-Oriented Programming
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" Separation of functionality and structure
= Separate development
= |ncremental functionality

~_® Not necessarily OO
= Can be implemented in non-O0 languages



g} Drawbacks i

" Loss of encapsulation

» Element type and operations are separated

= Visitor may need internal information from
element

" Adding a new Element type affects all
Visitors
= All Visitors may be extended
" Changing the Element types is costly
= [nterface to all Visitors must be redefined
" Double-dispatch

= Dependence on both Visitor and Element types
* Run-time binding




Example uses

" Graphical editors:
= |cons: add, remove, modify, open, manipulate

" Compilers and interpreters

= Syntax trees: type checking, optimisation,
pretty-printing, metrics

" Dynamic structure

= Structure changes at run-time
= Structure traversal depends on current result

" Component
= Configurable HW or SW components
= 3D virtual worlds

" Composite
= consider using Visitor, too
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" Visitor can be used as an architectural pattern
= To control functional extensibility
= To separate structure from functionality
= To encapsulate functionality

= Vijsitor was a good solution for the problem
= Was not difficult to implement
= Simplified adding and changing functionality



