Incremental functionality

VisItor as an
Architectural Pattern

>
-

Eddie.Szulc@Sioux.nl

Contents

" Domain overview

" Problem description

" Visitor Pattern and application
" Benefits and drawback

" Other examples

y

Metwork | CN and other

management | management

system — T
applications

/ e
Radio access (HANDS '_ Tﬂihi—'/
network /

Tools for radio access
management

Radio access network
operation suport

Radio network
controller

Radio base .

station Services
RAN
customer

é;}) Signal flow { &

" Upstream & Downstream
= Antenna interface
= Filtering
= Modulation & demodulation
= A/D & D/A
= Encoding & decoding
= ATM interface

) Signal flow block diagram

=9

ALT AT link termination BBRX Baseband recelver
ATM-IFC ATM interface client BETX Basehand transmitter L&, Low-noise amplifier
ATM-IFE ATM interface host DEC Decoder AR ATM multiplexor
BBIF Baseband interface EMNC Encoder TRYE-DIG Transceiver, digital part
BEBRA Baseband random access ET Exchangs terminal TRX-RF Transceiver, radio frequency part
AT Baseband THX
e e ET 1.5 .— — ATRA-IFX .-‘-"'M-IF-:JI— ENG I-- BETX —
p THX- THX-
ALT T DIG v

——

b AT hA-IFX ATM-IFC I— DEC BERY H= BEBIF —
AT

switch

To WOE r
w— L] k
ABYDC PWC I

é;:&) Radio Base Station processor str{]c_tu-},aeﬂ

" Main Processor (cluster)
" Multiple Board Processors

7 |
% Board Processor b %y

[| Hardware deVICGS éﬁ;g?&xelcommunication
n MlX Of DSPS, AS'CS, Device function control
FPG AS Board control
;7
= General software
= Qperation &
Maintenance

= Resource and
functionality handling

" Specific software
= Per device

Hardware (DSFE ASIC, etc.)

" Handle a mix of traffic (voice, circuit-
switched and packet-data services)
without hardware reconfiguration

® Different network structures
" Redundancy

" Modular design, software configurable

" Scalable architecture and easy to
expand

o
Frequency 2

[] Murmber of users in a cai

Project characteristics A

= 1,000 man
" Multiple layers of integration
" Incremental functionality

= General and specific

® |ncremental BP structure
= New devices
= New configurations

" Functionality and structure changing at
different times

i et

" Few types, many functions

DSP FPGA ASIC
Initialise X X X
test X X X
configure X X X
etc X X X

® Client asks Visitor to visit Structure
B Structure consists of elements
® Each Element offers itself to the Visitor

Client

/N

Structure Visitor

7
S

/
e

*

Element

% Visiting a structure T

*

Structure Element Visitor
accept(Visitor)

A B Init Stop

accept(Visitor)| accept(Visitor) MiSitA(A) VISItA(A)
VisitBB) | VisitB(B)

al->accept(init) AN init->visitA(al) ﬁ
—
. —
accept(init) ﬁ a2->accept(init) init->visitA(a2) ﬁ
T
~
—
bl->accept(init) AN init—>visitB(b1)ﬁ

® BoardProcessor is the Client
® Board is the Structure

" FunctionSet and ManagerSet are both sets
of Visitors

BoardProcessor

ManagerSet Board Function Set

) Board structure {

Board
N
1 <State>
HardwareGroup
all
*
*
CompositeHardwareUnit
children
*
HardwareUnit FunctionalUnit .

7 7

Fpga Dsp Uac Rarec Dec Dem

Functions

" Visualisation (LEDs)
" Fault handling

" Measurement handler
" Test handler

" Configuration handler
" Device handler

" etc.

Managers

" Managers
= Measurement manager
= Test manager
= Configuration manager
= Device manager
» Resource manager

" Responsibilities
= Check if application is in the correct state
= Has enough processing resources available
= Appropriate functionality to handle the signal
» Keeping track of the available functionality

@} Benefits 1/2

= Add functionality without modifying element
classes
= Cheap and easy
= Avoid pollution of classes with disjoint operations

» Relevant functionality per application for shared
structures

= Element classes not related by inheritance
= Visitors can accumulate state transparently

" Grouping of related functionality
= Encapsulation of functionality
= Optimisation of each function (+ inheritance)
= Easy to change algorithm
= Related to Aspect-Oriented Programming

P -~ .
mg} Benefits 2/2 b

]
=
Lo

" Separation of functionality and structure
= Separate development
= |ncremental functionality

~_® Not necessarily OO
= Can be implemented in non-O0 languages

g} Drawbacks i

" Loss of encapsulation

» Element type and operations are separated

= Visitor may need internal information from
element

" Adding a new Element type affects all
Visitors
= All Visitors may be extended
" Changing the Element types is costly
= [nterface to all Visitors must be redefined
" Double-dispatch

= Dependence on both Visitor and Element types
* Run-time binding

Example uses

" Graphical editors:
= |cons: add, remove, modify, open, manipulate

" Compilers and interpreters

= Syntax trees: type checking, optimisation,
pretty-printing, metrics

" Dynamic structure

= Structure changes at run-time
= Structure traversal depends on current result

" Component
= Configurable HW or SW components
= 3D virtual worlds

" Composite
= consider using Visitor, too

= | BlE
% Conclusion -

" Visitor can be used as an architectural pattern
= To control functional extensibility
= To separate structure from functionality
= To encapsulate functionality

= Vijsitor was a good solution for the problem
= Was not difficult to implement
= Simplified adding and changing functionality

