
Software Architecture
Verification at MR

Architecture Improvement during the Race

René L. Krikhaar
Rene.Krikhaar@philips.com

Philips Medical Systems
Magnetic Resonance
Best, the Netherlands

Overview

• Introducing myself
• Medical System: Magnetic Resonance
• Developing (SW) an MR system
• Software Architecture Verification
• Development Process
• Conclusions

Overview

• Introducing myself
• Medical System: Magnetic Resonance
• Developing (SW) an MR system
• Software Architecture Verification
• Development Process
• Conclusions

Introducing myself

• 1986: MSc. Computer Science KU Nijmegen
• 1994: MSc. Knowledge Engineering Uo Middlesex
• 1999: PhD. Computer Science Uv Amsterdam
Philips:
• 1987: VLSI Testing Software Engineer P-ASIC
• 1991: Logic Synthesis Software Engineer ED&T
• 1994: Research Scientist PRL-Eindhoven
• 1999: Software Architect MR Scan Software

Software Architecture
Reconstruction

Framework
– Described Architecture
– Redefined Architecture
– Managed Architecture

Software
Architecture
Verification

Software Architecture
Reconstruction

René L. Krikhaar

Overview

• Introducing myself
• Medical System: Magnetic Resonance
• Developing (SW) an MR system
• Software Architecture Verification
• Development Process
• Conclusions

Magnetic Resonance
system

What?
• (diagnostic) medical images

How?
• Magnetic field
• RF signals (receivers and transmitters)
• Gradient

MR Product Line
0.5 T

1.0 T
1.5 T

3.0 T

Functional Areas

Cardiology

Interventional

Radiology

Neurologyeurology

AngiographyAngiography

Functional BrainFunctional Brain

Overview

• Introducing myself
• Medical System: Magnetic Resonance
• Developing (SW) an MR system
• Software Architecture Verification
• Development Process
• Conclusions

Product Characteristics

• High Tech Product:
on the edge of possibilities in (MR) physics

• Each 0.5-1.0 yr new MR Products / Release
– new functionality (e.g. SENSE)
– new hardware (e.g. CPU, RF amplifier)

• Parallel Development
– Multiple Projects

“Complicating” Factors
for Development

• Large System
– more than 3 MLOC (Lines Of Code)
– many sw/hw developers (also multi-site)
– third party software/hardware

• Many products in MR Family
– deriving variants

• Incremental Development
– includes code written 20 years ago

Making Life Easier -1-

• Daily-Build-and-Smoke-Test (since 1984)

Making Life Easier -2-

• Define Coding Standards (since 1985)
• Enforce Check Coding Standards (since 1990)
• Improve Code for Coding Standards (since

1994)

Code Architecture
Verification

Scoping

Building Block
ACQ Building Block

LOGGING

LOGGING
is in the scope of

ACQ

File in ACQ
can #include

a file in LOGGING

Making Life Easier -3-

• Define Scoping rules (since 1988)
• Enforce Scoping rules (since 1990)
• Improve Scoping rules (since 1994)

Module Architecture
Verification

What did we achieve?

• Improvement of code comprehension
– coding standard
– scoping

• Reduction of coding errors
– coding standard

• Incremental Testing
– scoping

• Easier introduction of an OSAL
– scoping

Overview

• Introducing myself
• Medical System: Magnetic Resonance
• Developing (SW) an MR system
• Software Architecture Verification
• Development Process
• Conclusions

Software Architecture
Verification

• Software Architecture Verification is the
process of revealing deviations between
intended and actual software architecture
(achieving architecture conformance)

• Intended Software Architecture
– In architect’s mind, architectural documents

• Actual Software Architecture
– Implementation (i.e. source code)

Building Blocks

– A functional unit of the MR system.

– Building blocks are hierarchically organized,
meaning that a building block may consist of a
number of building blocks.

Acquisition Reconstruction

Magnet ACQControl PlatformPatient
Support

GradientRF-
system

Viewing
Processing

Patient
Physio-
logy

Patient
Commu-
nication

Patient
Administration

MR system

MethodsBDASdigital

MR System

Archiving

Platform

Operating System

Acqui-
sition

Recon-
struction Viewing

More Explicit Interfaces Required

Why interfaces?

• Separation of concerns
– maintenance
– new employees
– development (planning & tracking)
– testing
– parallel development
– product variants
– outsourcing
– ...

Building Blocks
and Interfaces

Platform

Recon-
struction Viewing

FileIO Threading Logging

Hierarchy in
Interface Usage

Reconstruction

Platform

R
Q

LoggingThreadingFileIO

Hierarchy
Interface Rule

Reconstruction

Platform

R

T
Threading

Making Life Easier -4-

• Define Interface Management (2000)
• Enforce Interface Management (2002)
• Improve Interfaces (> 2003)

Module Architecture
Verification

Managing the
Development Process

• Daily Build and Smoke Test
– quality & stability of code base

• Coding Standards
– comprehensability of code base

• Scoping Rules
– complexity of code base

• Interface Management
– life cycle independency in code base

Overview

• Introducing myself
• Medical System: Magnetic Resonance
• Developing (SW) an MR system
• Software Architecture Verification
• Development Process
• Conclusions

Interfaces in UML

PlatformLoggingThreadingFileIO

<<interface>>
FileIO

<<interface>>
Threading

<<interface>>
Logging

Platform

provides

<<interface>>
Logging

CLLOG
f1();
f2();

CLFR
g1();
g2();

Interface Usage in UML

Recon-
struction

Platform
Logging

Reconstruction

<<interface>>
Logging

Platform

provides

Interfaces in Code Archive

PlatformLoggingThreadingFileIO

• mrsystem
– platform

• threading (*.h)
• logging (*.h)
• fileio (*.h)
• source (*.cpp)

– reconstruction
• source (*.cpp)

Recon-
struction

Reconstruction

platform/logging

Interface Verification
ClearCase

• Mrsystem
– platform

• threading (*.h)
• logging (*.h)
• fileio (*.h)
• source (*.cpp)

– reconstruction
• source (recon.cpp)

Rational Rose
Reconstruction

<<interface>>
Logging

Platform

provid
es

CC -Iplatform/logging recon.cpp

Compile recon.cpp

+ Coding
standards

Development Deliverables
“close the chain”

• For each Building Block:
– Interface Specification (UML)
– Dependencies / Usage between

sub-Building Blocks (UML)
– Implementation of Building Block

• source code

– mr_build command

Review +
Authorisation

Review +
Coding Standards

SW Architecture
Verification

Overview

• Introducing myself
• Medical System: Magnetic Resonance
• Developing (SW) an MR system
• Software Architecture Verification
• Development Process
• Conclusions

Introduction in
Organisation

Preparation phase
1 Define the required architectural rule
2 Define a way to (automatically) enforce it
3 Measure “status” (get a threshold value)
Execution phase
1 Accept violations < threshold value
2 Decrease continously threshold
3 Solve rest of violations

Experience -1-

• Introduction on separate development stream
• Code Base analysis not completely okay

– missing parts of the code base
– action: fix in a separate action

• Nested include statement
– crossing subsystem borders
– action 1: adapt the mechanism
– action 2: fix in a separate action

Experience -2-

• Hard to find a project that took the ‘risk’
– be very early

• Deployment in organisation
– carefully planned and executed
– accepted by engineers

• New projects starting to use I/f management
– project control

Why does it
succeed at Philips MR?

• Management & Project Support
• Evolutionary Introduction Strategy
• Verification Mechanism

– automatic verification tools AND
– embedded in the organisation’s process

