
Agile architecture evolution of Philips Clinical Platforms
SASG presentation, October 4, 2023

Clemy van Gogh
Philips Innovation & Strategy – Innovation Engineering – Software Engineering and Components



Contents

• Introduction

• Agile architecture evolution in Philips

• Challenges

• Summary



Clemy van Gogh

• MSc Computer Science University Nijmegen

• 30+ years of experience in ASML, Thalys, Philips 
Healthcare

• 20+ years of experience as product, system and 
platform architect in Philips Healthcare

• Lead architect Philips Clinical Platforms

• Contributed to Agile process rollout in Philips for 
agile Architecture and Platforms



150 
Trained in 
SAFe 4.0 

CI/CD

2
R&D sites 
Eindhoven 
Bangalore

30+
Platform 
assets/ 
services 

11+ 
Philips 

businesses 
served

~10
releases per 

year
on demand

2 
weekly 
sprint

releases

Facts & figures

Started
in 1999

“platform 1”

restarted
in 2010

“platform 2”

“evolving
Platform”

revolution evolution

SAFe
2015



Facts & figures

Started
in 1999

“platform 1”

restarted
in 2010

“platform 2”

“evolving
Platform”

incompatible evolution

SAFe
2015

Philips Clinical Platform technologies:

• Programming languages: C#/.NET, C++, TypeScript/JavaScript/Angular/React
• Windows, Linux (partially) and AWS Cloud/Kubernetes (partially)
• Deliverables: libraries, Windows executables, Docker containers
• GitHub & innersource

Some numbers:

• ~2.8M product LOC
• ~2.2M test LOC / 70K test cases
• 20 builds per day / 10 acceptance test runs per day
• Full test suite execution once per day



Clinical Platforms context in Philips

Clinical Platforms operates as separate 
organization in Philips, working 
according SAFe;
Internal supplier in Philips

Business units have their own dev 
trains and solution integration

Philips &  Business portfolio management

Philips Strategic Architecture framework

Picture from https://scaledagileframework.com/



Platform Product management and collaborations

Realization (ART ~125fte)

Clinical Platform portfolio management
- Review of EPICS

- Value for platform
- Value for business/Philips
- Architecture fit
- Opportunity enablement

- Life Cycle Management
- Priority & roadmapping

Business engagement (per business)
- Participate in product/solution architecture
- Customer surveys (NPS)
- Yearly and quarterly roadmap & budget alignment

Philips enterprise guidance
- Strategic direction
- Product portfolio & platforms
- Architecture guidelines

Functional &
Architecture EPICs

Picture from https://scaledagileframework.com/



Contents

• Introduction

• Agile architecture evolution in Philips

- Agile architecture definition

- Critical success factors for evolution

• Challenges

• Summary



What is Agile Architecture?

Definition: “Agile Architecture is a set of values, practices, and collaborations that 
support a system's active, evolutionary design and architecture.”

Agile Architecture:

• Evolves while supporting the needs of current users

• Avoids overhead and delays associated with phase-gate and BDUF methods

• Ensures the system always runs

• Balances emergent and intentional design

• Takes a systems view across the entire value stream

Source: Advanced Topic - Agile Architecture in SAFe - Scaled Agile Framework

https://scaledagileframework.com/agile-architecture/


Architecture evolution
Major changes in the Philips platform

“monolithic black box with APIs”

ToFrom

Independent subsystems

Windows Windows & Linux

Windows UX/WPF Client-Server & Web UX

Device/Premise Device/Premise & Cloud

Executables Containers

.NET APIs & WCF .NET and REST APIs



Agile Architecture Evolution 
Critical Success Factors

Critical 
Success 
Factors

Keep 
customers 

happy

Process

And

Prioritization

Reference

Architecture

Architecture

Enablers

Single 
Archive 

& Runway

High quality 
every day

Fast 
feedback



Keep customers happy during evolution
Philips business unit (BU) developers are the key customers

General expectations

• Easy to integrate & use

• High quality

• Nonfunctional: performance, resource usage, operational cost

• Close collaboration

Evolution related expectations 

• Continuous integration

• Upgradeability: stable APIs & functionality

• Migration path in case of breaking changes

• Prepared for BU technology transitions

• [ Support of older versions for installed base]



Process and Prioritization
SAFe Principle #1 – Take an economic view 

Economic view is also applied for 
architecture changes & runway.

Incremental delivery with 
incremental value “ 
deliver early and often”

Source: SAFe Lean-Agile Principles - Scaled Agile Framework

Central Philips budget to prepare 
in advance for major changes 

Reserved percentage for 
keeping the software at 
sufficient quality (e.g. test 
coverage, technical debt)

Part of standard “portfolio process”
Tradeoff with functional features.
Based on:
• Time criticality
• Business value / Enabler
• Effort / cost

https://scaledagileframework.com/safe-lean-agile-principles/


Role of Reference Architecture
• Defining evolution guardrails

– Strategic interfaces and technology choices

• Reference check for portfolio decisions

– Framework for scope & architecture decisions

• Driving harmonization across portfolio

• Defining the “to be state” and transition path

– Providing guidance to platform team

– Providing guidance to BU solution architects

• Aiming at high decoupling

– Preferably cross process

– Technology independent APIs

Source: SAFe Lean-Agile Principles - Scaled Agile Framework
Source: https://www.cnpatterns.org/

Philips level
Architecture 
guardrails

Platform level
choices
(aligned with BUs)

Philips platform approach:
• Platform reference architecture document
• Yearly update
• Guideline during EPIC creation and (API) review

https://scaledagileframework.com/safe-lean-agile-principles/


16

Architecture Enablers
The Twelve factor App

• Use declarative formats for setup automation, to minimize time and
cost for new developers joining the project;

• Have a clean contract with the underlying operating system,
offering maximum portability between execution environments;

• Are suitable for deployment on modern cloud platforms, obviating
the need for servers and systems administration;

• Minimize divergence between development and production,
enabling continuous deployment for maximum agility;

• And can scale up without significant changes to tooling, architecture,
or development practices.

Source: The Twelve-Factor App (12factor.net)

https://12factor.net/


Architecture Enablers
SAFe Principle #3 – Assume variability; preserve options

Upfront: agree upon integration 
interfaces as early as possible

Adapt based on integration feedback

Evaluate options, together with BU
(e.g. performance evaluation)

Retain flexibility in platform development
“decentralized decision making” (principle 9)

Platform choices:
• API first: hide implementation details behind the API
• Decouple deployment from business logic
• Support Philips deployment platforms (device, premise, cloud)

Source: SAFe Lean-Agile Principles - Scaled Agile Framework

https://scaledagileframework.com/safe-lean-agile-principles/


Architecture Enablers
Decouple deployment from business logic

Business
Logic

Infrastructure 
Adapters

Context Adapters

Log, Trace, Metrics, 
IAM, Config,  ….

Image Data Loading 
(disk, memory, S3, ..)

Deployment

Philips platform choices:
• Flexible: pluggable / injection
• Deliberate choice on flexibility level (some designed upfront, some later) 
• Limited to Philips deployment platforms (device, premise, cloud)



• Microservices should communicate with one another only through the network,using simple, consistent, and stable APIs.

• Build stable APIs with backward compatibility.

• Place most of the service logic within the service itself, keeping the API simple and easily maintainable.

• Smart endpoints, dumb pipes (most of the business logic is in the microservices themselves and not in the APIs).

• Ensure each microservice has no direct access to data of other microservices.

• Make sure there is version control and version management for APIs.

Source: Communicate Through APIs (cnpatterns.org)

Architecture Enablers
CNCF PATTERN: Communicate Through APIs

Philips platform choices:
• Categories of assets: library, “subsystem”, application, microservice/container
• Technology independent interfaces (REST, industry standard)

https://www.cnpatterns.org/development-design/communicate-through-apis


Split applications into smaller, loosely coupled microservices that can be built, tested, deployed, and run
independently from other components.

• Small and independent teams work on separate modules and deliver them with only limited coordination
across the teams.

• Independent components allow different teams to progress at their own pace.

Architecture Enablers
CNCF PATTERN: Microservices architecture

Philips platform choices:
• Split of “black box monolith” into independent subsystems (major evolution 2014-2018)
• “independent deployable assets” : initially executables for devices (Windows), Docker containers in 

cloud, moving to containers for devices (Linux)
• Independent asset lifecycles and upgrade

Source: Microservices Architecture (cnpatterns.org)

https://www.cnpatterns.org/development-design/microservices-architecture


Single Archive and Runway
SAFe architecture evolution

Source: Architectural Runway - Scaled Agile Framework

Philips platform principles:
• In archive changes, no code branches
• Backwards compatible
• Working software always, enabling continuous integration and release on demand

https://scaledagileframework.com/architectural-runway/


Single Archive and Runway
Architectural runway types

• Small proof of concept
• “Out of archive” (github

repo)

Goal

How

Technology or concept 
evaluation

poc

Archive

• In archive 
• In place change
• Backwards compatible

Technology change/redesign

change

• In archive
• Parallel track
• Backwards compatible
• New API side by side

New delivery model or 
deployment

extend

new

Source: Architectural Runway - Scaled Agile Framework

https://scaledagileframework.com/architectural-runway/


High quality every day
Automated testing, delivery and dashboards

• Continuous build and test
– “shifting left”

– Fast ‘short’ tests

– Verifying backwards compatibility and compliance

– Aiming for high code coverage via automated tests

– Test pass rate: 99.5 %

• Continuous delivery
– Moved from file shares to Artifactory & Docker registry

– Daily / weekly versions for integration

– Release on demand, to cover the Quality and Regulatory artifacts

Source: Automated Testing (cnpatterns.org)

Enabling architecture evolution
• Working software always, enabling fast feedback: functional and non-functional
• Goal: 100% requirements coverage and >80% code coverage via automated tests
• Verifying in-archive runway changes
• Verifying backwards compatibility

https://www.cnpatterns.org/development-design/automated-testing


Fast feedback
Principle #4 – Build incrementally with fast, integrated learning cycles

Internally in 
Cinical Platforms

Between platform 
and BU product 
development

Picture from https://scaledagileframework.com/



Contents

• Introduction

• Agile architecture evolution in Philips

• Challenges

• Summary



Challenges

• Business drive for functional features, hard to get priority for architecture runway
– Tendency to delay runway till it becomes critical

• Higher development effort/cost to retain backwards compatibility 
– Runway development can be “perceived slow/costing more effort” which makes it more difficult to prioritize

• Archive/CICD must support technology transitions per asset
– In few cases the use of new technology was delayed, as other assets could not move in the same pace

• Keeping up CICD infrastructure with technology changes
– Extending build and test infrastructure for new deployments tends to have a long lead time

• Not able to enforce all architecture guidelines by the CICD pipeline
– Surprises during development (leading to higher effort)

• Long integration / cycle time at the BU for medical devices
– Delayed deprecation of old APIs/features

• Cloud native / serverless design
– Are not portable to on premise deployments and lead to (partial) duplicate implementations



Contents

• Introduction

• Agile architecture evolution in Philips

• Challenges

• Summary



Summary

• Architecture evolution is a deliberate choice and mindset

• Evolving a large software stack has been a proven practice

• Evolution does not come for free

• Reference architecture is critical to guide the evolution (including deprecation)

• Automated verification and continuous integration is critical enabler

• Taking an economic view is key to prioritize the architecture runway at the right moment

Architecture evolution has helped Philips Clinical Platform to stay up to date and 
to address evolving business needs while keeping satisfied users




