e

Agile architecture evolution of Philips Clinical P1 f‘é&rm f

SASG presentation, October 4, 2023 { g S \

‘l o 7 o '

“ . . ﬂ :

i1 1€€‘=§ b ¥ e, ~/
Clemy van Gbgh % '

Philips Innov’ption & Strategy — Innovation Engineering — Software'Engineering and Componehnts

a) -

-

innovation+ you pH I I.I pS

PHILIPS
-

2

Nt/
Contents

* Introduction
* Agile architecture evolution in Philips
* Challenges

* Summary

Clemy van Gogh

MSc Computer Science University Nijmegen

30+ years of experience in ASML, Thalys, Philips
Healthcare

20+ years of experience as product, system and
platform architect in Philips Healthcare

Lead architect Philips Clinical Platforms

Contributed to Agile process rollout in Philips for
agile Architecture and Platforms

Facts & figures

Started
in 1999
“platform 1”

30+

Platform
assets/
services

2

R&D sites
Eindhoven
Bangalore

restarted
in 2010
“platform 2”

11+

Philips
businesses

served

150

Trained in
SAFe 4.0

Cl/CD

“evolving
Platform”

~10

releases per
year
on demand

2

WEENY
sprint
releases

Facts & figures

Started : oy rfestza(;’;%d “evolving
in 1999 ML o Platform”

“vlatform 1” platform 2

Philips Clinical Platform technologies:

Programming languages: C#/.NET, C++, TypeScript/JavaScript/Angular/React
Windows, Linux (partially) and AWS Cloud/Kubernetes (partially)
Deliverables: libraries, Windows executables, Docker containers

GitHub & innersource

Some numbers:

~2.8M product LOC

~2.2M test LOC / 70K test cases

20 builds per day / 10 acceptance test runs per day
Full test suite execution once per day

Clinical Platforms context in Philips

SAFe 6.0

Select SAFe configuration

OVERVIEW ESSENTIAL LARGE SOLUTION PORTFOLIO FULL

O X»3» BUSINESS AGILITY 33 %

o

ang q q Agility \Ssuda) PORTF
Philips Strategic Architecture framework 2V Operationat atuo streams | Pofolio Flow - - g Data Valuo Stream Management —
— ——
- . . ae ° ¢ féiohe o0 00
Philips & Business portfolio management T N)) B R i B Lean Bocgens crorsnon e
y Cuardrans Bevelopment Value Streams
(Solution Train Flow o Solution SAROE SO i
Business units have their own dev “ . = @ 4 o
g i T ol
. . . . u mt = rchitec ad MBSE .
trains and solution integration Delivery 3 T N AN : — N
_ STE log S T - v a J
Bg;i::;u “‘ ART F-!Iow - Continuous Delivery Pipeline , H
Customer Centricity s 2 Solution Stared
‘ - ° (' \ I- o ACILE RELEASETRAIN . .’j Services
Agile - (Y] - -
Beivery @ . Ao Bor i — - - s s oo
r‘us Design Thinking B:ctlToq ¥ Release on Demand
Clinical Platforms operates as separate Toam Flow “ v Demn “ Cloud =
. . . ana . Agile Teams. e - Paer] Ead System
organization in Philips, working g - ’ ; : Yoam
according SAFe; Tooiiion ot SS% D @ - = H g 028) =
g ’ Agility owner by = H . Ny }oj ':‘ "
. . o Builtin Iterations voee m"\;:
Internal supplier in Philips L. N O —— A B - s
Business & Technology sAF:;;a: l;:nban Architectural Runway P s
ean-Agile ean-Agile = ore ° —— mplementation $2 \ Continuggis
t“dafA!gh‘i'P g:! L"i"::ﬂ' I_I \faluas PrisnAcsples CEJ_o : ’:oadml:; !3 SEC w

Picture from httns://scaledagileframework com;

Platform Product management and collaborations

. . .)
/ \ Philips enterprise guidance
linical Platform portfolio management - Strategic direction
i - Product portfolio & platforms
- eveweylEes - Architecture guidelines
- Value for platform _ & J
- Xalﬁ‘e for bus]lpess/Phlllps \Gf “?‘ e .) ~
- Architecture it 0 wres | M Business engagement (per business)
- Opportunity enablement ™) o °
. _ sa - Participatein product/solution architecture
- Life Cycle Management System Steer Align on ‘
o - Architect the ART Outcomes Solution Customer su rveys (NPS)
- Priority & roadmapping :)
\ \ - Yearly and quarterly roadmap & budget alighnment)

Product Management

/ Evolve the

Solution

0
2o M 020,
[)¢ 090
.--. Product i
Owners

8 Scaled Agile, Inc

Functional &
Architecture EPICs

Figure 1. Key Product Management collaborations

Realization (ART ~125fte
_ ()

~

Picture from https://scaledagileframework.com/

PHILIPS
g
a/_.
”,

g
Contents

* Introduction

* Agile architecture evolution in Philips
- Agile architecture definition

- Critical success factors for evolution
* Challenges

* Summary

What is Agile Architecture?

Definition: “Agile Architecture is a set of values, practices, and collaborations that
support a system's active, evolutionary design and architecture.”

Agile Architecture:

+ Evolves while supporting the needs of current users

 Avoids overhead and delays associated with phase-gate and BDUF methods

« Ensures the system always runs

+ Balances emergent and intentional design

» Takes a systems view across the entire value stream
While we must acknowledge emergence in design and system development, a little
planning can avoid much waste.

—James O. Coplien, Lean Architecture

https://scaledagileframework.com/agile-architecture/

Architecture evolution
Major changes in the Philips platform

From To

“monolithic black box with APIs” Independent subsystems

Windows Windows & Linux

Device/Premise Device/Premise & Cloud

Windows UX/WPF Client-Server & Web UX

Executables Containers

.NET APIs & WCF .NET and REST APIs

Agile Architecture Evolution
Critical Success Factors

High quality
every day

Keep
customers
happy

Process
And

Prioritization

Critical

Success
Fa Cto rs Reference

Architecture

Single
Archive

& Runway _ Enablers

Architecture

Keep customers happy during evolution o ®e
\ 4

Philips business unit (BU) developers are the key customers 0-8

General expectations

* Easy to integrate & use

* High quality

* Nonfunctional: performance, resource usage, operational cost

* Close collaboration

Evolution related expectations

* Continuous integration

* Upgradeability: stable APIs & functionality
* Migration path in case of breaking changes
* Prepared for BU technology transitions

* [Support of older versions for installed base]

Process and Prioritization é e e
SAFe Principle #1 - Take an economic view \@_®/

Economic view is also applied for
architecture changes & runway.

Incremental delivery with
incremental value “
deliver early and often”

Part of standard “portfolio process”
Tradeoff with functional features.
Based on: Guardrails
e Time criticality

* Business value / Enabler

* Effort/ cost

PB Lean Budgets

Reserved percentage for
keeping the software at
sufficient quality (e.g. test
coverage, technical debt)

Cost of Delay

Job Duration
(Job size)

WSJF =

Figure 4. The four primary aspects of the economic framework

Central Philips budget to prepare
in advance for major changes

Source: SAFe Lean-Agile Principles - Scaled Agile Framework

https://scaledagileframework.com/safe-lean-agile-principles/

Role of Reference Architecture

Defining evolution guardrails
— Strategic interfaces and technology choices

Reference check for portfolio decisions
— Framework for scope & architecture decisions

Driving harmonization across portfolio

Defining the “to be state” and transition path
— Providing guidance to platform team
— Providing guidance to BU solution architects

Aiming at high decoupling
— Preferably cross process
— Technology independent APIs

Philips platform approach:

. Platform reference architecture document

* Yearly update
* Guideline during EPIC creation and (API) review

Enterprise
Architect s

Strategy \

Philips level
Architecture
guardrails

Choice of Technology
and Usage

standardized
system architecture

A 0 O

Fo° %8

Platform level
choices

/

o] o) o]
0~0 o0 0/0
83 09a 0%a

A o} a
dev team dev team dev team

component A component B component C

!

(aligned with BUs)

Source: SAFe Lean-Agile Principles - Scaled Agile Framework

Source: https://www.cnpatterns.org/

https://scaledagileframework.com/safe-lean-agile-principles/

16

Architecture Enablers
The Twelve factor App

* Use declarative formats for setup automation, to minimize time and
cost for new developers joining the project;

e Have a clean contract with the underlying operating system,
offering maximum portability between execution environments;

* Are suitable for deployment on modern cloud platforms, obviating
the need for servers and systems administration;

* Minimize divergence between development and production,
enabling continuous deployment for maximum agility;

* And can scale up without significant changes to tooling, architecture,
or development practices.

THE TWELVE FACTORS %

3
3

.

I. Codebase \@_@

One codebase tracked in revision control, many deploys

II. Dependencies
Explicitly declare and isolate dependencies

IIL. Config

Store config in the environment

IV. Backing services
Treat backing services as attached resources

V. Build, release, run
Strictly separate build and run stages

VI. Processes
Execute the app as one or more stateless processes

VIL Port binding

Export services via port binding

VIII. Concurrency
Scale out via the process model

IX. Disposability

Maximize robustness with fast startup and graceful shutdown

X. Dev/prod parity

Keep development, staging, and production as similar as possible

XI. Logs

Treat logs as event streams

XII. Admin processes
Run admin/management tasks as one-off processes

Source: The Twelve-Factor App (12factor.net)

https://12factor.net/

Architecture Enablers { @oi

SAFe Principle #3 — Assume variability; preserve options ‘©-8
Upfront: agree upon integration Adapt based on integration feedback
interfaces as early as possible

-
M M
3 Multiple Ol
7] design M M
E options [O=====
y S L e)
» Ol
e — _
Leaming points Time
Figure 2. Set-Based Design provides multiple design options
Evaluate options, together with BU Retain flexibility in platform development
(e.g. performance evaluation) “decentralized decision making” (principle 9)

Platform choices:
* APIfirst: hide implementation details behind the API

* Decouple deployment from business logic
* Support Philips deployment platforms (device, premise, cloud)

Source: SAFe Lean-Agile Principles - Scaled Agile Framework

https://scaledagileframework.com/safe-lean-agile-principles/

Architecture Enablers
Decouple deployment from business logic

Business
Logic

Infrastructure
Context Adapters

Image Data Loading Log, Trace, Metrics,
(disk, memory, S3, ..) IAM, Config,

Deployment

Philips platform choices:

* Flexible: pluggable / injection

* Deliberate choice on flexibility level (some designed upfront, some later)
* Limited to Philips deployment platforms (device, premise, cloud)

Architecture Enablers é\ = ;é
CNCF PATTERN: Communicate Through APIs ©-S

API : g
* Microservices should communicate with one another only through the network,using simple, consistent, and stable APIs. QI\'\\ dumb -“,—'-X
I \\ pipes Pid
+ Build stable APIs with backward compatibility.
smart el AP|

endpoints —p

* Place most of the service logic within the service itself, keeping the APl simple and easily maintainable.
* Smart endpoints, dumb pipes (most of the business logic is in the microservices themselves and not in the APIs).
* Ensure each microservice has no direct access to data of other microservices.

* Make sure there is version control and version management for APIs.

Philips platform choices:

» Categories of assets: library, “subsystem”, application, microservice/container
* Technology independent interfaces (REST, industry standard)

https://www.cnpatterns.org/development-design/communicate-through-apis

Architecture Enablers é\ @ ;é
CNCF PATTERN: Microservices architecture ©-&

0a0o

,l O O \ = 1 o 8\\
Split applications into smaller, loosely coupled microservices that can be built, tested, deployed, and run 000~ =1 000
5 Sy D D 2 \\ D %/
independently from other components. .- :
* Small and independent teams work on separate modules and deliver them with only limited coordination ,/é 8
across the teams. \ 8D'l

* Independent components allow different teams to progress at their own pace.

Philips platform choices:
* Split of “black box monolith” into independent subsystems (major evolution 2014-2018)

* “independent deployable assets” : initially executables for devices (Windows), Docker containers in
cloud, moving to containers for devices (Linux)
* Independent asset lifecycles and upgrade

https://www.cnpatterns.org/development-design/microservices-architecture

Single Archive and Runway
SAFe architecture evolution

...to support
future functionality

Implemented now. .

| Enavier |
| Enabler

Enabler

1
® Scaled Agile, Inc.

Figure 1. Architectural runway evolves in support of dynamic business needs

Philips platform principles:
* In archive changes, no code branches

* Backwards compatible
* Working software always, enabling continuous integration and release on demand

https://scaledagileframework.com/architectural-runway/

Single Archive and Runway
Architectural runway types

Goal

How

Archive

Technology or concept
evaluation

* Small proof of concept
* “Out of archive” (github
repo)

Technology change/redesign

* Inarchive
* In place change
* Backwards compatible

New delivery model or
deployment

* Inarchive

* Parallel track

* Backwards compatible
* New API side by side

https://scaledagileframework.com/architectural-runway/

High quality every day

Automated testing, delivery and dashboards

e Continuous build and test

“shifting left”

Fast ‘short’ tests

Verifying backwards compatibility and compliance
Aiming for high code coverage via automated tests
Test pass rate: 99.5 %

e Continuous delivery

Moved from file shares to Artifactory & Docker registry
Daily / weekly versions for integration
Release on demand, to cover the Quality and Regulatory artifacts

Enabling architecture evolution
Working software always, enabling fast feedback: functional and non-functional

Goal: 100% requirements coverage and >80% code coverage via automated tests
Verifying in-archive runway changes
Verifying backwards compatibility

o\e

! % \

QY e
0-

PATTERN: AUTOMATED TESTING

end to end

ihtégfat_ic')ri

https://www.cnpatterns.org/development-design/automated-testing

Fast feedback
Principle #4 — Build incrementally with fast, integrated learning cycles

m Deadline

False positive
T
a— feasibility?
point :
| |
Fast, integrated
cycles

Time

Between platform
and BU product
development

Internally in
Cinical Platforms

Risks

Figure 3. The lack of frequent integration points creates false positive feasibility.

Picture from https://scaledagileframework.com/

PHILIPS
-

2

Nt/
Contents

* Introduction
* Agile architecture evolution in Philips
* Challenges

* Summary

Challenges

Business drive for functional features, hard to get priority for architecture runway

— Tendency to delay runway till it becomes critical

Higher development effort/cost to retain backwards compatibility

— Runway development can be “perceived slow/costing more effort” which makes it more difficult to prioritize

Archive/CICD must support technology transitions per asset

— Infew cases the use of new technology was delayed, as other assets could not move in the same pace

* Keeping up CICD infrastructure with technology changes

— Extending build and test infrastructure for new deployments tends to have a long lead time

Not able to enforce all architecture guidelines by the CICD pipeline

— Surprises during development (leading to higher effort)

Long integration / cycle time at the BU for medical devices

— Delayed deprecation of old APIs/features

Cloud native / serverless design
— Are not portable to on premise deployments and lead to (partial) duplicate implementations

PHILIPS
-

2

Nt/
Contents

* Introduction
* Agile architecture evolution in Philips
* Challenges

* Summary

Summary

Architecture evolution is a deliberate choice and mindset

Evolving a large software stack has been a proven practice

Evolution does not come for free

Reference architecture is critical to guide the evolution (including deprecation)

Automated verification and continuous integration is critical enabler

* Taking an economic view is key to prioritize the architecture runway at the right moment

Architecture evolution has helped Philips Clinical Platform to stay up to date and

to address evolving business needs while keeping satisfied users

PHILIPS

N

J;
4

e

