
PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V.

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2021 NXP B.V.

5 O C T O B E R 2 0 2 1

Andrei Terechko, Yuting Fu, Jochen Seemann

MIDDLEWARE FOR SAFE

SOFTWARE-DEFINED CARS

2PUBLIC

AUDIENCE SURVEY

1. Who works in the automotive industry?

2. Who knows benefits of the zonal architecture?

3. Why do we need Time-Sensitive Networking?

4. Who worked with ROS, SOME/IP or MQTT?

3PUBLIC

OUTLINE

1. What is middleware doing in the software-defined car?

2. Survey of middleware protocols and software stacks

3. Proof-of-concepts: DDS-TSN integration and DDS-based safe fail-over design

4. Conclusions and further reading

4PUBLIC

DISTRIBUTED PROCESSING: THE TREND IN AUTOMOTIVE SYSTEM ARCHITECT URE

(HARDWARE PERSPECTIVE)

• Physical consolidation to reduce wiring

• Central computer for number crunching

• Zonal modules have to safely and securely:

−aggregate

− forward

−convert

−process

• A PCB or SoC has distributed processors to

boost efficiency and modularity

• Complex requirements on networking devices

CENTRAL

COMPUTER

ZONAL

MODULE

ZONAL

MODULE

ZONAL

MODULE

ZONAL

MODULE

5PUBLIC

Interconnect

(Ethernet, PCIe, UART, …)

Middleware

DISTRIBUTED PROCESSING: THE TREND IN AUTOMOTIVE SYSTEM ARCHITECT URE

(SOFTWARE PERSPECTIVE)

Middleware

• Past: weakly programmable ECUs, each performing one mostly isolated function

• Present: consolidated ECUs running flexible software with complex control and advanced functions

• Future: software-defined cars with easy-to-program distributed interoperable software services; the

corresponding system architecture is commonly referred to as Service-Oriented Architecture

• Middleware is a collection of software libraries for distributed processing simplifying development of

composable modular systems; the middleware is a key building block of the service-oriented architecture

• Middleware examples: ROS, DDS, SOME/IP, MQTT, Cyber RT, Apex.Middleware, Iceoryx, ...

SoC1
(Cortex-M, Cortex-A)

SoCQ
(RISC IV, Cortex-R)

OSM
(Linux)

OS1
(AUTOSAR)

App1
(Automated

Driving,

C, C++)

AppN
(Infotainment,

C#, Java,

Python)

user APIs, QoS

transport, OS API

…

…

OST
(QNX)

OSR
(FreeRTOS)

AppP
(BMS,

C)

AppR
(Automated

Driving,

C++, Python)

user APIs, QoS

transport, OS API

…

…

component examples are in brackets

https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Middleware_(distributed_applications)

Distributed

Application

C, C++, Ada,

Python, ...

CDR

RTPS

TCP/UDP

ROS2

Distributed Application

RPC, async actions,

Limited QoS, Security

CDR

RTPS

RMW

C, C++, Python

DDS ROS

Distributed

Application

C++, Python, LISP

Distributed Application

C, C++

RTPS

DDS-XRCE

DDS-

XRCE

Agent

Micro CDR

Cyber RT

Distributed

Application

RTPS

IP

Ethernet, Wi-Fi

TCP/UDP

IP

TCP/UDP

IP

Ethernet, Wi-Fi

HTTP

IP

Ethernet, Wi-Fi,

Serial

TCP/UDP

IP

Ethernet,

Wi-Fi

Protobuf

Scheduler,

Discovery

C++, Python

SOME/IP

Distributed

Application

TCP/UDP

IP

Ethernet,

Wi-Fi

micro-ROS

Distributed

Application

TCP/UDP

IP

Ethernet, Wi-Fi, BLE,

ZigBee, Serial

C, C++

XML-

RPC

TCP (UDP*)

Linux, RTOS,

AUTOSAR,

Windows

MQTT

Distributed

Application

TCP

IP

Ethernet, Wi-Fi

C, C++, Java,

Python

micro-ROS RMW

Micro CDR

NuttX RTOS, Linux

RTPS

Linux, RTOS Linux, RTOS, OS X,

Windows, Android

Linux, OS X,

Windows, Android
Linux

Linux, OS X,

Windows, Android

AUTOSAR,

Linux

Limited QoS, RPC,

Security

(AUTOSAR

proxy/skeleton),

Limited QoS,

RPC, Security

DDS-

XRCE

Agent

ROS

Master

Broker

Network Media
Data

Serialization
Communication

Management

Distributed

Application

Operating

SystemsBridge Transport

Ethernet, Wi-Fi, BLE,

ZigBee, Serial

QoS, RPC,

Security
Limited QoS

Limited QoS,

RPC, Security

CDR

RPC

API

C, C++

PDU

XML,

JSON,

CBOR

ROS

msgROS2 IDL, IDL IDL
IDL

IDL

Executor, Discovery,

Lifecycle

Node

Management

Executor, LifecycleExecutor, Lifecycle
Discovery,

Lifecycle
Discovery, Limited

Lifecycle
Discovery Discovery

MIDDLEWARE SOFTWARE STACKS COMPARISON

Communication Protocol
Characteristics

DDS ROS1 Cyber RT uORB SOME/IP UAVCAN POSIX
Socket

OpenAMP +
RPmsg (channel)

AMQP ZeroMQ

Publish-Subscribe pattern Y Y Y Y Y Y Y (limited) N Y Y

Real Time Publish-Subscribe (RTPS) Y N Y N N N N N ? N

Remote Procedure Call (RPC) Y Y Y ? Y Y N Y Y Y

On-chip communication Y Y Y Y Y Y Y Y Y Y

Inter-chip communication Y Y ? N Y ? Y Y ? ?

(Re)discovery Y Y Y ? Y Y N Y Y N

Real-time Y N Y N ? Y Y Y Y Y

Multi-OS support Y Y ? Y Y Y Y Y Y Y

Security Y N Y N Y Y N Y Y Y

Quality of Service (QoS) Y (rich) N Y (limited) N Y (very limited) Y? Y (limited) ? Y Y

Standard API Y N N (Apollo-specific) ? Y (AUTOSAR-specific) Y Y N ? Y

Safety certification Y N N N ? N N N N N

License Open source &
Commercial

Open
source

Open source Open
source

Open source Open
source

Open
source

Open source Open
source

Open
Source

COMPARISON OF POPULAR (AUTOMOTIVE) MIDDLEWARE PROTOCOLS

https://github.com/ApolloAuto/apollo/tree/285e1d0a87481b19cfcb325b059a7770797367d1/cyber
https://dev.px4.io/en/middleware/uorb.html
https://uavcan.org/
https://github.com/OpenAMP/open-amp/wiki/RPMsg-Messaging-Protocol
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://zeromq.org/get-started/

Data Distribution Service middleware meets requirements of autonomous driving systems:

• Safe and reliable

• Secure

• Automotive certification

• Ethernet (UDP, TCP), Shared memory, UART, PCIe

• DDS-TSN (Time Sensitive Networking) integration

• Resource-constrained safety core (RTI Micro, DDS-XRCE)

• Quality of service for different data streams

• Large ecosystem of tools and libraries

Reference: https://www.rti.com/industries/automotive/autonomous-vehicles-production

https://www.rti.com/industries/automotive/autonomous-vehicles-production

9PUBLIC

OUTLINE

1. What is middleware doing in the software-defined car?

2. Survey of middleware protocols and software stacks

3. Proof-of-concepts: DDS-TSN integration and DDS-based safe fail-over design

4. Conclusions

Interconnect

(Ethernet, PCIe, UART, …)

MiddlewareMiddleware

SoC1
(Cortex-M, Cortex-A)

SoCQ
(RISC IV, Cortex-R)

OSM
(Linux)

OS1
(AUTOSAR)

App1
(Automated

Driving,

C, C++)

AppN
(Infotainment,

C#, Java,

Python)

user APIs, QoS

transport, OS API

…

…

OST
(QNX)

OSR
(FreeRTOS)

AppP
(BMS,

C)

AppR
(Automated

Driving,

C++, Python)

user APIs, QoS

transport, OS API

…

…

i.MX8 infotainmenttelematicsphone, cloud camera

high-performance computerworkstation (zonal) gateway network

Autonomous Valet Parking

RTI Connext® DDS

LS2084

drive-by-wire (simulator) interface

camera service for telematics

RTI Connext® DDS

S32G, SJA1110

Time-Sensitive Networking

SJA1110s

automated driving

simulator

storage

DDS-TSN INTEGRATION PROOF -OF-CONCEPT (URL)

https://www.nxp.com/design/training/dds-and-tsn-where-software-and-hardware-meet-for-dependable-communication-using-rti-connext-drive-and-nxp-s32g-processor:TIP-DDS-AND-TSN-WHERE-SOFTWARE-AND-HARDWARE-MEET

1 1PUBLIC

OPEN-SOURCE DEMO TO PROMOTE DDS AND TSN INTEGRATION

• Goals:

− illustrate and popularize advantages of the DDS and TSN integration

− simple evaluation with open-source ROS tools and consumer devices

• Implementation:

− application code from scratch at NXP

− automotive use-case: moose test

− based on ROS 2 Foxy and Gazebo

− Published on GitHub:

https://github.com/NXP/dds-tsn

https://en.wikipedia.org/wiki/Moose_test
https://github.com/NXP/dds-tsn

1 2PUBLIC

Ownership

QoS valueConvert

Autoware

messages

to the

simulator

messages

Active DDS nodes

Inactive DDS nodes

Healthy network connection

FAIL - OVER AND TAKEOVER SAFETY MECHANISMS BASED ON DDS [P U B L I C U R L]

https://www.nxp.com/company/blog/safety-mechanisms-using-the-dds-middleware-in-software-defined-cars:BL-SAFETY-MECHANISMS

1 3PUBLIC

DATA STREAMS

LG SVL simulator vehicle

control message

Autoware

Vehicle Control

Command

Active DDS node

Inactive DDS node

Autoware Vehicle

Control Command

1 4PUBLIC

FAULT MIT IGATION

Autoware Vehicle

Control Command

(safe stop)

LG SVL simulator

vehicle control message

Failed DDS node

Power off

Network

connection loss

1 5PUBLIC

CONCLUSIONS

• Software becomes the key differentiator, supported by cost-effective programmable reliable chips

• Middleware software enables safe distributed processing in a software-defined car

• Applications demand from middleware:

− modular and composable component API with various language bindings

− various Quality-of-Service policies (redundancy, real-time, reliability)

− rich ecosystem of libraries, tools, documentation

− certifications, community or commercial support

• Platform demands from middleware:

− ability to run on various OSes and processors (RTOS, lock-step resource-constrained cores)

− mapping of DDS topics and QoS policies to TSN Ethernet streams and protocols

− support for various transport media (TSN Ethernet, PCIe, shared memory)

• DDS meets many requirements of automotive applications and platforms

1 6PUBLIC

FURTHER READING

1. NXP and RTI on DDS-TSN integration webinar

2. TSN and middleware integration at NXP TechDays

3. Open-source DDS-TSN integration example on NXP GitHub

4. NXP webinar “Transition to Zonal Architectures: Challenges and NXP Solutions”

5. NXP trainings on service-oriented gateway S32G

6. “Choosing the Right TSN Tools to meet a Bounded Latency” by Don Pannell (2nd link)

7. “DDS and TSN: the future of real-time data exchange?” blog post by RTI

8. GuardKnox on zonal architectures , SOA and software-defined cars

9. McKinsey report on automotive software and electronics through 2030

10. A DDS-TSN integration white paper is coming up, let me know if you are interested

https://www.nxp.com/design/training/dds-and-tsn-where-software-and-hardware-meet-for-dependable-communication-using-rti-connext-drive-and-nxp-s32g-processor:TIP-DDS-AND-TSN-WHERE-SOFTWARE-AND-HARDWARE-MEET
https://www.nxp.com/design/training/integrating-time-sensitive-networking-and-middleware-protocols:TIP-TD-AUT238
https://github.com/NXP/dds-tsn
https://www.nxp.com/design/training/transition-to-zonal-architectures-challenges-and-nxp-solutions:TIP-TD-AUT204
https://www.nxp.com/design/training/s32g2-vehicle-network-processors-training:TS-S32G2-VEHICLE-NETWORK-PROCESSORS-WEBINAR-SERIES
https://www.ieee802.org/1/files/public/docs2020/dg-pannell-ChoosingTheRightTSNToolsToMeetABoundedLatency-0920-v2.pdf
https://www.allaboutcircuits.com/industry-articles/choosing-the-right-tsn-tools-to-meet-a-bounded-latency/
https://www.rti.com/blog/dds-and-tsn-the-future-for-real-time-data-exchange
https://www.guardknox.com/automotive-zonal-architecture/
https://www.business-review-webinars.com/webinar/Automotive/SOA_and_the_Software_Defined_Car_ndash_From_Concept_to_Reality-KqWRfGNT
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.

