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AUDIENCE SURVEY

1. Who works in the automotive industry?

2. Who knows benefits of the zonal architecture?

3. Why do we need Time-Sensitive Networking?

4. Who worked with ROS, SOME/IP or MQTT?
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OUTLINE

1. What is middleware doing in the software-defined car?

2. Survey of middleware protocols and software stacks

3. Proof-of-concepts: DDS-TSN integration and DDS-based safe fail-over design

4. Conclusions and further reading
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DISTRIBUTED PROCESSING:  THE TREND IN  AUTOMOTIVE SYSTEM ARCHITECT URE

(HARDWARE PERSPECTIVE)

• Physical consolidation to reduce wiring

• Central computer for number crunching

• Zonal modules have to safely and securely:

−aggregate

− forward

−convert

−process

• A PCB or SoC has distributed processors to 

boost efficiency and modularity

• Complex requirements on networking devices
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Interconnect

(Ethernet, PCIe, UART, …)

Middleware

DISTRIBUTED PROCESSING:  THE TREND IN  AUTOMOTIVE SYSTEM ARCHITECT URE

(SOFTWARE PERSPECTIVE)

Middleware

• Past: weakly programmable ECUs, each performing one mostly isolated function

• Present: consolidated ECUs running flexible software with complex control and advanced functions

• Future: software-defined cars with easy-to-program distributed interoperable software services; the 

corresponding system architecture is commonly referred to as Service-Oriented Architecture

• Middleware is a collection of software libraries for distributed processing simplifying development of 

composable modular systems; the middleware is a key building block of the service-oriented architecture

• Middleware examples: ROS, DDS, SOME/IP, MQTT, Cyber RT, Apex.Middleware, Iceoryx, ...
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https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Middleware_(distributed_applications)
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MIDDLEWARE SOFTWARE STACKS COMPARISON



Communication Protocol 
Characteristics

DDS ROS1 Cyber RT uORB SOME/IP UAVCAN POSIX 
Socket

OpenAMP +
RPmsg (channel)

AMQP ZeroMQ

Publish-Subscribe pattern Y Y Y Y Y Y Y (limited) N Y Y

Real Time Publish-Subscribe (RTPS) Y N Y N N N N N ? N

Remote Procedure Call (RPC) Y Y Y ? Y Y N Y Y Y

On-chip communication Y Y Y Y Y Y Y Y Y Y

Inter-chip communication Y Y ? N Y ? Y Y ? ?

(Re)discovery Y Y Y ? Y Y N Y Y N

Real-time Y N Y N ? Y Y Y Y Y

Multi-OS support Y Y ? Y Y Y Y Y Y Y

Security Y N Y N Y Y N Y Y Y

Quality of Service (QoS) Y (rich) N Y (limited) N Y (very limited) Y? Y (limited) ? Y Y

Standard API Y N N (Apollo-specific) ? Y (AUTOSAR-specific) Y Y N ? Y

Safety certification Y N N N ? N N N N N

License Open source & 
Commercial 

Open 
source

Open source Open 
source

Open source Open 
source

Open 
source

Open source Open 
source

Open 
Source

COMPARISON OF POPULAR (AUTOMOTIVE)  MIDDLEWARE PROTOCOLS

https://github.com/ApolloAuto/apollo/tree/285e1d0a87481b19cfcb325b059a7770797367d1/cyber
https://dev.px4.io/en/middleware/uorb.html
https://uavcan.org/
https://github.com/OpenAMP/open-amp/wiki/RPMsg-Messaging-Protocol
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://zeromq.org/get-started/


Data Distribution Service middleware meets requirements of autonomous driving systems:

• Safe and reliable

• Secure

• Automotive certification

• Ethernet (UDP, TCP), Shared memory, UART, PCIe

• DDS-TSN (Time Sensitive Networking) integration

• Resource-constrained safety core (RTI Micro, DDS-XRCE)

• Quality of service for different data streams

• Large ecosystem of tools and libraries

Reference: https://www.rti.com/industries/automotive/autonomous-vehicles-production

https://www.rti.com/industries/automotive/autonomous-vehicles-production
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OUTLINE

1. What is middleware doing in the software-defined car?

2. Survey of middleware protocols and software stacks

3. Proof-of-concepts: DDS-TSN integration and DDS-based safe fail-over design

4. Conclusions
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i.MX8 infotainmenttelematicsphone, cloud camera

high-performance computerworkstation (zonal) gateway network

Autonomous Valet Parking

RTI Connext® DDS

LS2084

drive-by-wire (simulator) interface

camera service for telematics

RTI Connext® DDS

S32G, SJA1110

Time-Sensitive Networking

SJA1110s

automated driving

simulator

storage

DDS-TSN INTEGRATION PROOF -OF-CONCEPT (URL)

https://www.nxp.com/design/training/dds-and-tsn-where-software-and-hardware-meet-for-dependable-communication-using-rti-connext-drive-and-nxp-s32g-processor:TIP-DDS-AND-TSN-WHERE-SOFTWARE-AND-HARDWARE-MEET
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OPEN-SOURCE DEMO TO PROMOTE DDS AND TSN INTEGRATION

• Goals:

− illustrate and popularize advantages of the DDS and TSN integration

− simple evaluation with open-source ROS tools and consumer devices

• Implementation:

− application code from scratch at NXP

− automotive use-case: moose test

− based on ROS 2 Foxy and Gazebo

− Published on GitHub:

https://github.com/NXP/dds-tsn

https://en.wikipedia.org/wiki/Moose_test
https://github.com/NXP/dds-tsn
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Ownership 

QoS valueConvert 

Autoware

messages 

to the 

simulator 

messages

Active DDS nodes

Inactive DDS nodes

Healthy network connection

FAIL - OVER AND TAKEOVER SAFETY MECHANISMS BASED ON DDS [ P U B L I C  U R L ]

https://www.nxp.com/company/blog/safety-mechanisms-using-the-dds-middleware-in-software-defined-cars:BL-SAFETY-MECHANISMS
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DATA STREAMS

LG SVL simulator vehicle 

control message

Autoware

Vehicle Control 

Command

Active DDS node

Inactive DDS node

Autoware Vehicle 

Control Command
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FAULT MIT IGATION

Autoware Vehicle 

Control Command

(safe stop)

LG SVL simulator 

vehicle control message

Failed DDS node

Power off

Network 

connection loss
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CONCLUSIONS

• Software becomes the key differentiator, supported by cost-effective programmable reliable chips

• Middleware software enables safe distributed processing in a software-defined car

• Applications demand from middleware:

− modular and composable component API with various language bindings

− various Quality-of-Service policies (redundancy, real-time, reliability)

− rich ecosystem of libraries, tools, documentation

− certifications, community or commercial support

• Platform demands from middleware:

− ability to run on various OSes and processors (RTOS, lock-step resource-constrained cores)

− mapping of DDS topics and QoS policies to TSN Ethernet streams and protocols

− support for various transport media (TSN Ethernet, PCIe, shared memory)

• DDS meets many requirements of automotive applications and platforms
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FURTHER READING

1. NXP and RTI on DDS-TSN integration webinar

2. TSN and middleware integration at NXP TechDays

3. Open-source DDS-TSN integration example on NXP GitHub

4. NXP webinar “Transition to Zonal Architectures: Challenges and NXP Solutions”

5. NXP trainings on service-oriented gateway S32G

6. “Choosing the Right TSN Tools to meet a Bounded Latency” by Don Pannell (2nd link)

7. “DDS and TSN: the future of real-time data exchange?” blog post by RTI

8. GuardKnox on zonal architectures , SOA and software-defined cars

9. McKinsey report on automotive software and electronics through 2030

10. A DDS-TSN integration white paper is coming up, let me know if you are interested

https://www.nxp.com/design/training/dds-and-tsn-where-software-and-hardware-meet-for-dependable-communication-using-rti-connext-drive-and-nxp-s32g-processor:TIP-DDS-AND-TSN-WHERE-SOFTWARE-AND-HARDWARE-MEET
https://www.nxp.com/design/training/integrating-time-sensitive-networking-and-middleware-protocols:TIP-TD-AUT238
https://github.com/NXP/dds-tsn
https://www.nxp.com/design/training/transition-to-zonal-architectures-challenges-and-nxp-solutions:TIP-TD-AUT204
https://www.nxp.com/design/training/s32g2-vehicle-network-processors-training:TS-S32G2-VEHICLE-NETWORK-PROCESSORS-WEBINAR-SERIES
https://www.ieee802.org/1/files/public/docs2020/dg-pannell-ChoosingTheRightTSNToolsToMeetABoundedLatency-0920-v2.pdf
https://www.allaboutcircuits.com/industry-articles/choosing-the-right-tsn-tools-to-meet-a-bounded-latency/
https://www.rti.com/blog/dds-and-tsn-the-future-for-real-time-data-exchange
https://www.guardknox.com/automotive-zonal-architecture/
https://www.business-review-webinars.com/webinar/Automotive/SOA_and_the_Software_Defined_Car_ndash_From_Concept_to_Reality-KqWRfGNT
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030
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