
Dezyne succeeds ASD
The new upgrade in formal verification based MDSD

Author: Michaël van de Ven (Sioux)

60th Systems Architecture Study Group Meeting

June 15, 2017

About Michaël van de Ven

> Joined Sioux in 2006

> Technology Specialist ASD/Dezyne

> Experience with Verum’s technology

in >10 projects as of 2009

> Contributing to Dezyne since the start in ‘14

2© Sioux 2017 | Confidential

About Sioux

© Sioux 2017 | Confidential 3

> Founded in 1996 (Eindhoven), grown to 500 employees

> Technical software, mechatronics, electronics, industrial

mathematics, remote solutions

> The innovative technology partner for high tech companies:

• Supports in development and manufacturing of their products

• Help in shorten the development time by excellent productivity

Sectors

Semicon & Solar

Life Science & Health

Automotive

Image & Printing

Consumer Electronics & Telecom

Traffic, Transport & Infrastructure

Agro & Food

© Sioux 2017 | Confidential | 4

About Verum

© Sioux 2017 | Confidential 5

> Founded in 2004 (Waalre)

> Academic background:

• TU/e, Oxford University, University of Tennessee

> Provides software engineering tools for designing

verifiably correct embedded software:

• ASD: Analytical Software Design

• Dezyne: successor of ASD as of 2014

Facing the challenges

The challenge

In a world of software controlled systems getting more complex, how could

engineers master the challenge?

7© Sioux 2017 | Confidential

Example of challenges

8© Sioux 2017 | Confidential

Software system

 System decomposition: initially vs future

 Correctness of components functioning together

and more…

> Concurrency

> Reliability / Safety

> Scalability

> Time to market

> Increase productivity

> Creating features vs. solving defects

> Burdened with technical debt

9© Sioux 2017 | Confidential

Do we still enjoy coding?

When software systems grow further and further

 Keep on handwriting only: unsustainable

 Quality assurance: how to proof absence of defects?

 Growing automated testsuites contribute to even more

handwritten code

>> Model-driven development seems to be a saviour <<

10© Sioux 2017 | Confidential

Model-driven, with verification?

 Model-driven methods enable us to specify on a more
abstract level, and then generate code. That’s a good thing!

 Some methods also promise ‘checking’. But behold the
assumption that it would imply defect-freeness!

 So what is being checked?

> Completeness of specification?

> Coverage of all scenarios, not just only the happy flow?

> Nasty defects like: race conditions, dead/live-locks?

> What is the case: verification and/or validation. Or nil?

ASD/Dezyne to the rescue

12© Sioux 2017 | Confidential

ASD & Dezyne

Sioux has knowledge of various model driven

engineering tools. The tools from Verum are preferred

when control logic is being developed.

> Component based development

modelling of interfaces, components and systems

> Mathematical power

verification, simulation and code generation

> Dezyne (aka ASD Gen 2) provides for the future

open language, easier to adopt and extendability

The fundament of ASD/Dezyne

13© Sioux 2017 | Confidential

✔

The technology

guarantees

equivalence

Formal

model and

verification

Generate

formal model

Design

Errors

Source

Code

Model

Generate

source code

from verified

model

 Models are:
 Precise

 Complete

 Traceable

 Correct

 C

 Tiny C

 C++

 C#

 Java

 JavaScript

✔

14© Sioux 2017 | Confidential

Subdividing and encapsulation

Collaborating

processes take a

system responsibility.

Process B

messages messages

Process C

<<system>>

Process A

Conceptually, a

system can be

recursively depicted

into sub systems.

15© Sioux 2017 | Confidential

Collaboration via interfaces

An interface is the

contract between two

software components.

<<system>>

<<component>>

Process B

<<component>>

Process A

messages messages

<<component>>

Process C

<<interface>><<interface>>

<<interface>>

For a sensible

collaboration a protocol

is required, specified

by the interface.

Commands, events, data

There’s no interface without a protocol

A protocol must define the syntax, semantics, and synchronization of

communication. The specified behavior is typically independent of how

it is to be implemented.

> Syntax: function prototype, the API signature

> Semantics: functional description, meaning

> Synchronization: what/when, functional behavior

Important: multiple realizations can have the same external visible behavior

16© Sioux 2017 | Confidential

17© Sioux 2017 | Confidential

Three types of models

<<system>>

Design Model

Design Model

Design Model

Interface Model Interface Model

Interface Model

System Model

interface IMyInterface
{
in void RequestX();
out void SomeNotification();

behaviour { ... }
}

component MyDesignModel
{
provides IMyInterface api;
requires ISensor sensor;
requires IMotor motor;

behaviour { ... }
}

component MySystem
{
provides IMyInterface portX;
requires ISensor windowSensorY;

system {
// instantiate all components
MyDesignModel example;
Motor motorZ;
// interconnect
portX <=> example.api;
example.sensor <=> windowsSensorY;
example.motor <=> motorZ.api;

}}

18© Sioux 2017 | Confidential

Model verification

<<system>>

Design Model

Design Model

Design Model

Interface Model

System Model

Scope of

verification

The models are

checked on:

> Completeness

> Provided interface

compliance

> Correct usage of

used interface

> Live/dead-locks and

race conditions

> Determinism

> Check on Illegals

By iterating all design

models, the entire system

is regarded modelchecked.

Example interface model in detail

19© Sioux 2017 | Confidential

interface IValveControl
{
enum Result { Ok, Fail, Error };

in Result Initialize();
in void Terminate();
in Result OpenValve();
in Result CloseValve();
out void SomeInformationEvent();

behaviour
{

enum State { Uninitialized, Idle, Error };
State state = State.Uninitialized; // Set initial state

on Terminate: state = State.Uninitialized; // Always allowed

[state.Uninitialized]
{

on Initialize: {reply(Result.Ok); state = State.Idle;}
on Initialize: reply(Result.Fail);
on OpenValve, CloseValve: illegal;

}
[state.Idle]
{

on Initialize: illegal;
on OpenValve, CloseValve: reply(Result.Ok);
on OpenValve, CloseValve: { reply(Result.Error);

state = State.Error; }
on optional: SomeInformationEvent;

}
[state.Error]
{

on Initialize, OpenValve, CloseValve: illegal;
}

}}

State chart view:

Semantics must be

precise and complete.

Also specify when events

are not allowed

(by keyword ‘illegal’)

Sequence diagram view

while simulating:

Creating a system (of systems)

20© Sioux 2017 | Confidential

component Camera
{
provides IControl control;

system
{
Driver driver;

Acquisition acquisition;
Optics optics;
HardwareLayer hardware;

control <=> driver.control;
driver.acquisition <=> acquisition.port;
driver.optics <=> optics.port;

hardware.acquire <=> acquisition.acquire_hardware;
hardware.contrast <=> acquisition.contrast_hardware;
hardware.flash <=> optics.flash_hardware;

}
}

System model specification: System view:

further

expanded:

21© Sioux 2017 | Confidential

What isn’t ASD/Dezyne

 Not a tool that solves all problems

 Not a tool that does all the thinking for you

 Not suitable for systems that concentrate on data processing

 Not a tool to create a Domain Specific Language

> you are actually ‘programming’ from protocol point of view

 Validation (functional correctness)

> although Dezyne’s roadmap presents items in collaboration with TU/e:

2018: Multi-component simulation & verification

2019: System simulation & verification

22© Sioux 2017 | Confidential

The beneficial ASD/Dezyne effect

Measured since 2013

 Using ASD we reduced the cost on the total

development project with ~35% on average

> Including license costs

 In maintenance phase the number of defects is

extremely low (handful in the 1st maintenance year)

 Increased productivity

 Increased quality

Comparison: Dezyne and ASD

23© Sioux 2017 | Confidential

Feature Dezyne ASD

Core Functionality Automated Formal Verification JJ J

Code Generation JJ J

Sequence Trace JJ J

Customer Requirements Open model description J L

SysML Compatibility J L

Ease of Use Text based Modelling Language J L

IDE Integration J L

Component Simulation J L

Applicability Easy Legacy Integration J L

Unified Threading Model J L

Value System Architecture Definition J L

(Executable) Trace Replay J L

My insight so far

24© Sioux 2017 | Confidential

?

> Fundamentals: Both ASD and Dezyne are based on the same core
strength of formal verification and the effects on a project

> Opportunity: Dezyne offers room to extend these benefits

Start new project?
> ideal maximize the benefits

Migrate ASD? Pick the right strategy:
> inefficient continue on auto converted models

especially multi-threaded scheme

> effective rebuild from scratch, side-by-side
backed by existing validation

See how far we already got! Develop smarter

25© Sioux 2017 | Confidential

~ -

Traditionally


defect free


defect freeno defects left?

?

www.sioux.eu

Source of
your technology

