Dezyne succeeds ASD -%

The new upgrade in formal verification based MDSD

SOURCE OF YOUR TECHNOL(

s 60th S tem Archltfcfurf S[tuTy tfroug Meetmg

‘zb

..- v).(: . "l ,
m SR

s kr ” g \(l Uk, .. : QO o)

5 ' .H..‘\ ~ N . » .

. . “ gy $..!"" ¢ $ T '\}.! 71993 ‘..s-

ot il y \.v‘, "‘,..l‘ U v R : .

" S RN “__éJ_‘ff' ~ o Al Pl o S " 4 v ,
' JN 4 w’w‘\' Stak bt Ay bl 2 Mo oy -]

« Author: Michaél van de Ven (Sioux) ..

About Michaél van de Ven

> Joined Sioux in 2006
> Technology Specialist ASD/Dezyne

> Experience with Verum’s technology
In >10 projects as of 2009

> Contributing to Dezyne since the start in “14

PHILIPS

- o0 .
ASML > Yy F E l u PHENOM Y KTOMRA

L)
ERICSSON part of Thermo Fisher Scientific "

i o

© Sioux 2017 | Confidential 2

About Sioux

> Founded in 1996 (Eindhoven), grown to 500 employees

> Technical software, mechatronics, electronics, industrial
mathematics, remote solutions

> The innovative technology partner for high tech companies:

+ Supports in development and manufacturing of their products -

- Help in shorten the development time by excellent productivity)

SOURCE OF YOUR TECHNOLOGY

3

© Sioux 2017 | Confidential

Sectors

@ Semicon & Solar

Life Science & Health
Automotive

Image & Printing
3) Consumer Electronics & Telecom

Traffic, Transport & Infrastructure

Pl
T4
{ R
'] B L&

(¢#) Agro & Food

et i,'f

P S

-- © Sioux 2017 | Confidential | = 4 =

About Verum

> Founded in 2004 (Waalre)

> Academic background:
+ TU/e, Oxford University, University of Tennessee

> Provides software engineering tools for designing
verifiably correct embedded software:
- ASD: Analytical Software Design

- Dezyne: successor of ASD as of 2014
verum®

Facing the challenges

The challenge

In a world of software controlled systems getting more complex, how could
engineers master the challenge?

© Sioux 2017 | Confidential 7

Example of challenges
= System decomposition: initially vs future

= Correctness of components functioning together

ASmL

n —

and more... = [soiwases D

> Concurrency

> Reliability / Safety

> Scalability

> Time to market
> Increase productivity

> Creating features vs. solving defects

> Burdened with technical debt

o W

© Sioux 2017 | Confidential

8

Do we still enjoy coding? I .

When software systems grow further and further CODING

= Keep on handwriting only: unsustainable

= Quality assurance: how to proof absence of defects?

= Growing automated testsuites contribute to even more

handwritten code

>> Model-driven development seems to be a saviour <<

© Sioux 2017 | Confidential 9

Model-driven, with verification?

= Model-driven methods enable us to specify on a more
abstract level, and then generate code. That's a good thing!

= Some methods also promise ‘checking’. But behold the
assumption that it would imply defect-freeness!

- So what is being checked? i the Land of the
blind, the one eyea }

> Completeness of specification?

> Coverage of all scenarios, not just only the happy flow?
> Nasty defects like: race conditions, dead/live-locks? B LW Lg RLW@
> What is the case: verification and/or validation. Or nil?

© Sioux 2017 | Confidential - 10

ASD/Dezyne to the rescue

ASD & Dezyne

Sioux has knowledge of various model driven
engineering tools. The tools from Verum are preferred
when control logic is being developed.

> Component based development
modelling of interfaces, components and systems

> Mathematical power
verification, simulation and code generation

> Dezyne (aka ASD Gen 2) provides for the future

open language, easier to adopt and extendability ve r u m (R)

software by design

-- © Sioux 2017 | Confidential = 12 =

The fundament of ASD/Dezyne

= Models are:
= Precise

, = Complete
= Traceable

Correct

—

Design

!Errors / \

Generate
formal model

Generate
source code
from verified
model

C

Tiny C
C++

C#

Java
JavaScript

" Formal

The technology

guarantees
equivalence

© Sioux 2017 | Confidential 13

Subdividing and encapsulation

Conceptually, a
system can be

e e e e e e - - - ——— recursively depicted

: S<system>> into sub systems.

' |

| Process A / !

| :

' |

' |

: messages messages I

. :

' |

' |

' |

I .

. | Process B Process C | Collaborating

| | processes take a
i - system responsibility.

© Sioux 2017 | Confidential 14

Collaboration via interfaces

<<interface>>
P e e e Commands, events, data
| <<system>> ? .
' <<component>> ,
ProcessyA~ For a sensible
| collaboration a protocol
Is required, specified

by the interface.

|

|

|

|

|

|

[mesSsages messages

| g\ I

| \ |

I <<interface>> [

| |

: <<component>> <<component>> [_ _

| Process B ProcessC | | An interface Is the

| ! contract between two
|

g g g g —— - software components.

© Sioux 2017 | Confidential 15

There’s no interface without a protocol

A protocol must define the syntax, semantics, and synchronization of
communication. The specified behavior is typically independent of how
It Is to be implemented.

> Syntax: function prototype, the API signature
> Semantics: functional description, meaning
> Synchronization: what/when, functional behavior

Important: multiple realizations can have the same external visible behavior

© Sioux 2017 | Confidential * 16

Three types of models

System Model

-\

| <<system>>

Design Model

Interface Model

Interface Model

Design Model

Design Model

interface IMyInterface

{

in void RequestX();
out void SomeNotification(Q);

behaviour { ... }

}

component MyDesignModel

{

provides api;
requires sensor;
requires motor;

behaviour { ... }

}

component MySystem

{
provides portX;
requires windowSensory;
system {
// instantiate all components
MyDesignModel example;
Motor motorz;
// interconnect
portx <=> example.api;
example.sensor <=> windowsSensory;
example.motor <=> motorz.api;
1}

© Sioux 2017 | Confidential 17

The models are

Model verification checked on:
Scope of
verification > Completeness
System Model PR A~ Vs > Provided interface

v <_<s\ys_ter_n>_>_ 7 Interface I\ﬂbd{l —————— , compliance
I
: // \ : > Correct usage of

|)
: ' Design Model \ | used interface
| \ | | > Live/dead-locks and
' ! race conditions
: \ / l
! ' > Determinism
, «, nterface Model P Interface MFdeI
! ~ ~ ! > Check on lllegals
I ~ gy = - |
, l
I . . .
I Design Model Design Model : By |terat|ng a_” deS|gn
| | models, the entire system

I

e e e e e ___T---—-———————- - Is regarded modelchecked.

© Sioux 2017 | Confidential 18

Example interface model in detalil

interface IvalveControl

{

enum Result { ok, Fail, Error };

I besylt Imirialize)s Sequence diagram view
in voi Terminate(); ; . . L
in Result oOpenvalve(); Semantics must be while Slmulatlng.

in Result Closevalve(); 5 precise and complete.
out vo1i SomeInformationEvent y . i
Also specify when events 'ValveGontrol

behaviour

; are not allowed | Initialize =
enum State { Uninitialized, Idle, Error }; : Result Ok 1]
State state = State.Uninitialized; // Set initial state kevword fll |’ D G e .

(by cywo d €ga) OpenValve .

on Terminate: state = State.Uninitialized; Always allowed :
// y < Result_Ok >]]
[state.Uninitialized] SomelnformationEvent -
{ —
on Initialize: {reply(Result.ok); state CloseValve .

on Initialize: reply(Result.Fail); State chart view:

! Result_Error

on Openvalve, Closevalve: illegal;

2 R — O T e ST .

[state.Tdle] Terminate .

{ return >I.I
on Initialize: illegal; n Initialize < 1
on Openvalve, Closevalve: reply(Result.ok); %0 Terminate .
on Openvalve, Closevalve: { reply(Result.Error); -

state = State.Error; } P

) on optional: SomeInformationEvent; Some!nfor?nationévent;

Estate.Error] Np— e Vasridnata
on Initialize, Openvalve, Closevalve: illegal; ' ‘_’”V""e

} Ny Sy R

13}

© Sioux 2017 | Confidential 19

Creating a system (of systems)

System model specification: System view:
component Camera Camera
t provides 1control control; o
system o
{ o1

Driver driver; []

=] Camera

. + | Acquisitio
Acquisition acquisition; Acquisition

Optics optics; Driver
HardwareLayer hardware;
J

control <=> driver.control; | [
driver.acquisition <=> acquisition.port;
driver.optics <=> optics.port;

+ HardwarelLayer [=JAcquisition [=| Optics

hardware.acquire <=> acquisition.acquire_hardware; OpticsControl

hardware.contrast <=> acquisition.contrast_hardware;
hardware.flash <=> optics.flash_hardware;

further
expanded:

ﬁ

© Sioux 2017 | Confidential 20

What isn’t ASD/Dezyne

Not a tool that solves all problems

Not a tool that does all the thinking for you

Not suitable for systems that concentrate on data processing

Not a tool to create a Domain Specific Language
> you are actually ‘programming’ from protocol point of view

Validation (functional correctness)
> although Dezyne’s roadmap presents items in collaboration with TU/e:
2018: Multi-component simulation & verification
2019: System simulation & verification

© Sioux 2017 | Confidential - 21

The beneficial ASD/Dezyne effect

Measured since 2013

= Using ASD we reduced the cost on the total
development project with ~35% on average

> Including license costs

= In maintenance phase the number of defects is
extremely low (handful in the 15t maintenance year)

= Increased productivity

= Increased quality

© Sioux 2017 | Confidential - 22

Comparison: Dezyne and ASD

Feature Dezyne ASD

©
©

Core Functionality = Automated Formal Verification

©
©

Code Generation

©
©

Sequence Trace

Customer Requirements Open model description

SysML Compatibility

Ease of Use Text based Modelling Language
IDE Integration

Component Simulation

Applicability Easy Legacy Integration
Unified Threading Model

Value System Architecture Definition

©0 00 ©OO6G © 06
DO OO PDO® ®® © OO

(Executable) Trace Replay

© Sioux 2017 | Confidential = 23

My Insight so far

> Fundamentals: Both ASD and Dezyne are based on the same core
strength of formal verification and the effects on a project

> Opportunity: Dezyne offers room to extend these benefits

Start new project?
> ideal maximize the benefits

Migrate ASD? Pick the right strategy:

> nefficient continue on auto converted models
especially multi-threaded scheme

> effective rebuild from scratch, side-by-side
backed by existing validation

© Sioux 2017 | Confidential

24

See how far we already got! Develop smarter

Traditionall Y

~35% total project
cost reduction

o

:—3'5?? % total-
project cost reduction

L
K 5
 Tee

no defects left? defect free

defect free
- . sk _ B . < e o . > ‘: :.-.; ..'. _";';‘.:‘ - e — -
= = = .

- - R . B ' : X ——
-
- -.z - @

> -~
- - — &
- —— - - - - . - 2~ g‘ ;

=

.

o P)‘ B
- - = i ”
- e -

2 g

o >

& -

e %
-_—— . —
\“:T_ ~

© Sioux 2017 | Confidential - 25

Source of
your technology

Www.Ssioux.eu

