Public

ASML

A software modularity metric Joost Zonneveld Bram Schoenmakers

2016-02-02

ASML In 40 Seconds

ASML

Public Slide 2 2 February 2016

New devices, new applications

ASML

Public Slide 3 2 February 2016

Wearable sensors (Holst Centre)

Imaging drone to monitor crop growth and yield (imec)

Cell sorter to detect metastization (imec)

Textile integrated health patch

Simband with health monitoring (Samsung)

Micro mirrors for beamers (TI)

On-Chip DNA amplification and detection (imec/Panasonic)

Lab on a Chip (LOC) for counting red blood cells

Characteristics driving Twinscan SW architecture

ASML

Public Slide 4 2 February 2016

ASML Twinscan software facts and figures

ASML

Public Slide 5 2 February 2016

Architecture

- Specified (not derived) using ASML Architecture Description Language
 - Different perspectives (software layers, litho functions, product variants)
 - Build time enforced: not according to ADL → can not be built
- Explicit interfaces, specified with ASML IDL
- Focus on macro modularity and micro modularity

Patterns and tools for Data, Control and Algorithms

Implementation

- 50 MLoc, mostly C, C++ ↑, Python ↑ and Matlab↑
- 2200 components, 11000 interfaces
- About 8 DSLs with code generation.

Objectives for modular software

What

- Scalable software, support growing product and growing company
- Reuse functionality across releases
- Support outsourcing/OEM development

How: System of Systems approach:

- Develop modules like developing a system.
 - Maximum ownership / empowerment
 - Local optimization possibilities (process, tools, branching)
 - Focused on module's core business
 - Local technology phase in/out
- Develop Twinscan by integrating / reusing modules
 - Decentral what can be, central what must be (efficiency, consistency)

System of Systems in automotive domain

ASML

Public Slide 6 2 February 2016

Intro: Module

ASML

Public Slide 7 2 February 2016

Intro: Reuse module across releases

ASML

Public Slide 9 2 February 2016

Before 2015

Share functionality by merging between monolithic system archives

New feature

Now: reuse sources, build the whole system Plan: reuse binaries

Measure modularity

A modularity metric was developed to estimate modularity.

• Steer towards:

Reuse of modules across releases

Independent module evolution

Suitable external metric was searched but not found

Public Slide 10 2 February 2016

• Assess whether a prospect module is ready for an independent archive

! metric is not a goal, but a means to show modularity improvement.

Ref: You Are What You Measure (Hauser, Katz)

Modularity metric design guidelines

- Discourage small modules (lesson learned from industry partner)
- Prevent modules to become smaller and smaller (lesson learned from interface metric)
- Applicable for multiple abstraction levels
- Minimize biases that cause wrong conclusions / allow gaming
- Insensitive to relative position of module in hierarchy
- Measurable with reasonable cost/overhead
- Prefer snapshot measurements over measurement over time
- Prepared for binary integration (availability of source files not required)

Public

2 February 2016

Calculation of the metric: weighted sum of 7 submetrics

Public Slide 12 2 February 2016

ASML

Mix of submetrics reduces vulnerability for gaming

Submetric 1: change frequency provided interfaces

ASML Public Slide 13

Property	Metric	Weight	Measures: sum of number of changes to provided interfaces in the past year.
Interface stability	Change frequency provided interfaces	15%	
	Change frequency required interfaces	15%	Ref: Open Closed Principle (OCP)
Coupling	# provided + required symbols	15%	Rationale: minimize client impact when
	# direct cyclic dependencies	15%	upgrading.
Testability	Configuration space (prov. + req. VPs)	10%	Range: 0 – 10 changes per year
	# missing symbols in other releases	10%	Lower is better.
Locality of Change	% single module streams	20%	Biases: favors large interfaces; favors overly abstract
			interfaces; discourages interface refactoring. Does not

2 February 2016

cover semantics. Compatible and incompatible changes

are treated equally.

Submetric 2: change frequency required interfaces

ASML

Public Slide 14 2 February 2016

Property	Metric	Weight	Measures: sum of number of changes to required interfaces in the past year. Ref: Stable Dependencies Principle (SDP)	
Interface stability	Change frequency provided interfaces	15%		
	Change frequency required interfaces	15%		
Coupling	# provided + required symbols 15% Ration		Rationale: stability contributes to binary	
	# direct cyclic dependencies	15%	integration. Both sides are participants in the interface contract.	
Testability	Configuration space (prov. + req. VPs)	10%		
	# missing symbols in other releases	10%	Range: 0 – 20 changes per year	
Locality of Change	% single module streams	20%	Lower is better.	

Biases: See previous slide + Could lead to duplicate functionality (reducing coupling)

Submetric 3: provided + required interface symbols

Property	Metric	Weight	Measures: number of provided + required	
Interface stability	Change frequency provided interfaces	15%	Symbols	
	Change frequency required interfaces	15%	Rationale: minimize coupling with other	
Coupling	# provided + required symbols	15%		
	# direct cyclic dependencies	15%	Range: 0 – 10000 symbols	
Testability	Configuration space (prov. + req. VPs)	10%	Lower is better	
	# missing symbols in other releases	10%	Biases: Could lead to duplicate functionality (reducing	
Locality of Change	% single module streams	20%	coupling); No distinction essential/accidental dependencies; Hidden dependencies not counted.	

ASML

2 February 2016

Public

Submetric 4: cyclic dependencies

Property	Metric	Weight	Measures: number of interfaces causing a cycle	
Interface stability	Change frequency provided interfaces	15%	between two modules.	
	Change frequency required interfaces	15%	Ref: Acyclic Dependencies Principle (ADP)	
Coupling	# provided + required symbols	15%	Rationale: Minimize coupling, prevent upgrade dependencies and contributes to binary integration	
	# direct cyclic dependencies	15%		
Testability	Configuration space (prov. + req. VPs)	10%	Range: 0-100 interfaces	
	# missing symbols in other releases	10%	Lower is better.	
Locality of Change	% single module streams	20%	Bias: Accountability issue (account to A or B?) Could lead to duplicate functionality to reduce	
			coupling; Direct cycles only; Could lead to smaller modules.	

Submetric 5: configuration space

ASML

Public Slide 17 2 February 2016

Property	Metric	Weight
Interface stability	Change frequency provided interfaces	15%
	Change frequency required interfaces	15%
Coupling	# provided + required symbols	15%
	# direct cyclic dependencies	15%
Testability	Configuration space (prov. + req. VPs)	10%
	# missing symbols in other releases	10%
Locality of Change	% single module streams	20%

Measures: multiplication of number of values of module's variation points.

Ref: Open Closed Principle (OCP)

Rationale: lower scores indicates that it's easier to test all possible configurations of a module.

Range: 0 - 110

Lower is better, this can be a *huge* number, therefore its 10-base log is used as metric.

Biases: Assumes all variants are orthogonal. Discourages adding more (configurable) functionality.

Submetric 6: missing symbols for shareability

Property	Metric	Weight	Measures: average number of symbols
Interface stability	Change frequency provided interfaces	15%	required by the mainline version of the module, but missing in selected releases
	Change frequency required interfaces	15%	Def. Delesse Deves Favilyelence Drinsigle
Coupling	# provided + required symbols	15%	(REP)
	# direct cyclic dependencies	15%	Rationale: module can more easily be
Testability	Configuration space (prov. + req. VPs)	10%	"plugged" into other releases.
Shareability	# missing symbols in other releases	10%	Range: 0 – 2000 symbols
Locality of Change	% single module streams	20%	Lower is better

Biases: Semantics not covered.

Submetric 7: % single module streams

Public Slide 19 2 February 2016

Property	Metric	Weight	Measures: Locality of Change for module A:
Interface stability	Change frequency provided interfaces	15%	Inder(A) = streams only affecting A
	Change frequency required interfaces	15%	all streams affecting A
Coupling	# provided + required symbols	15%	Ref: Common Closure Principle
	# direct cyclic dependencies	15%	Rationale: a high score indicates that the
Testability	Configuration space (prov. + req. VPs)	10%	module can evolve independently.
	# missing symbols in other releases	10%	Range: 0 – 100%
Locality of Change	% single module streams	20%	Higher is better

Bias: captures process-oriented aspects, does not cover multiple single-module streams for the same function.

Deployment of modularity improvement

Public Slide 20 2 February 2016

ASML has a roadmap to transform the monolithic archive in modular software

Now 6 independent macro modules, covering ~25% of the software.

Modularity metric used to steer the remaining 75% to be come sufficient modular.

The owners of candidate modules define their target for modularization

