
Joost Zonneveld
Bram Schoenmakers

2016-02-02

A software modularity metric

Public

2 February 2016

Slide 2

Public

ASML In 40 Seconds

2 February 2016

Slide 3

Public

New devices, new applications

Micro mirrors for

beamers (TI)
Lab on a Chip (LOC) for

counting red blood cells

On-Chip DNA amplification and

detection (imec/Panasonic)

Wearable sensors

(Holst Centre)

Textile integrated

health patch

Simband with health

monitoring (Samsung)

Cell sorter to detect

metastization (imec)

Imaging drone to monitor

crop growth and yield (imec)

Product
Family

Continuous
enhancement
after release

Concurrent
development by
+1000 SW
engineers

Increasing
coupling
at nm
level

2 February 2016

Slide 4

Public

Characteristics driving Twinscan SW architecture

NXT weight ~ Boeing 737

NXE weight ~ Dreamliner

2 February 2016

Slide 5

Public

ASML Twinscan software facts and figures

Architecture

• Specified (not derived) using ASML Architecture Description Language

• Different perspectives (software layers, litho functions, product variants)

• Build time enforced: not according to ADL can not be built

• Explicit interfaces, specified with ASML IDL

• Focus on macro modularity and micro modularity

Implementation

• 50 MLoc, mostly C, C++ ↑ , Python ↑ and Matlab↑

• 2200 components, 11000 interfaces

• About 8 DSLs with code generation.

Patterns and tools for

Data, Control and Algorithms

2 February 2016

Slide 6

Public

Objectives for modular software

What

• Scalable software, support growing product and growing company

• Reuse functionality across releases

• Support outsourcing/OEM development

How: System of Systems approach:

• Develop modules like developing a system.
• Maximum ownership / empowerment

• Local optimization possibilities (process, tools, branching)

• Focused on module’s core business

• Local technology phase in/out

• Develop Twinscan by integrating / reusing modules

• Decentral what can be, central what must be (efficiency, consistency)

System of Systems

in automotive domain

2 February 2016

Slide 7

Public

Intro: Module

Module

Defined
content /

Separation of
concern

Independent
development
/ Locality of

change

Minimum
dependencies

Stable /
compatible
provided &
required

interfaces

Reusable
(across

releases)

Module A

{components}

Interfaces become

external to the module if

used by another module

Required interfaces

A module is a (virtual) collection of ASML SW

components.

A module is considered a black box.

Target: 25 - 50 macro modules

Module properties

Provided interfaces

Module definition

2 February 2016

Slide 8

Public

Intro: Interfaces

Interface

Syntax Files

Functions

Structs

Enums

#defines

Semantics
#changes

can be counted

#symbols

can be counted

An interface change is backward compatible if

client sources/binaries need no adaption

Interface is a contract between two or more modules

The contract is stored in one of the modules

2500 inter module interfaces

(of 10000 total)

Depending on source integration or

binary integration

Protocol State Machines (POC)

2 February 2016

Slide 9

Public

Intro: Reuse module across releases

6.1

7.2

6.2 6.1

6.2

7.2

New feature

merge

merge

Share functionality

by merging between

monolithic system

archives

Now: reuse sources, build the whole system

Plan: reuse binaries

Since 2015 Before 2015

2 February 2016

Slide 10

Public

Measure modularity

A modularity metric was developed to estimate modularity.

• Steer towards:

Reuse of modules across releases

Independent module evolution

Comprehensibility, minimize complexity

• Assess whether a prospect module is ready for an independent archive

! metric is not a goal, but a means to show modularity improvement.

 Ref: You Are What You Measure (Hauser, Katz)

Suitable external

metric was searched

but not found

http://www.mit.edu/~hauser/Papers/Hauser-Katz Measure 04-98.pdf
http://www.mit.edu/~hauser/Papers/Hauser-Katz Measure 04-98.pdf

2 February 2016

Slide 11

Public

Modularity metric design guidelines

• Discourage small modules

(lesson learned from industry partner)

• Prevent modules to become smaller and smaller
(lesson learned from interface metric)

• Applicable for multiple abstraction levels

• Minimize biases that cause wrong conclusions / allow gaming

• Insensitive to relative position of module in hierarchy

• Measurable with reasonable cost/overhead

• Prefer snapshot measurements over measurement over time

• Prepared for binary integration (availability of source files not required)

2 February 2016

Slide 12

Public

Calculation of the metric: weighted sum of 7 submetrics

Modularity metric 𝐴 = 𝑚 𝐴 ∗ 𝑤 𝑚

𝑚∈Metrics

∗ 𝐶(𝐴𝑠𝑖𝑧𝑒)

Weight of metric m

Value of submetric m, range:

[0,1]

Modularity metric of module A

Correction factor based on size

of module A.

Lower for smaller modules

Mix of submetrics reduces vulnerability for gaming

2 February 2016

Slide 13

Public

Submetric 1: change frequency provided interfaces

Property Metric Weight

Interface stability Change frequency provided interfaces 15%

Change frequency required interfaces 15%

Coupling # provided + required symbols 15%

direct cyclic dependencies 15%

Testability Configuration space (prov. + req. VPs) 10%

Shareability # missing symbols in other releases 10%

Locality of Change % single module streams 20%

Measures: sum of number of changes to

provided interfaces in the past year.

Ref: Open Closed Principle (OCP)

Rationale: minimize client impact when

upgrading.

Range: 0 – 10 changes per year

Lower is better.

Biases: favors large interfaces; favors overly abstract

interfaces; discourages interface refactoring. Does not

cover semantics. Compatible and incompatible changes

are treated equally.

2 February 2016

Slide 14

Public

Submetric 2: change frequency required interfaces

Measures: sum of number of changes to

required interfaces in the past year.

Ref: Stable Dependencies Principle (SDP)

Rationale: stability contributes to binary

integration. Both sides are participants in the

interface contract.

Range: 0 – 20 changes per year

Lower is better.

Biases: See previous slide + Could lead to duplicate

functionality (reducing coupling)

Property Metric Weight

Interface stability Change frequency provided interfaces 15%

Change frequency required interfaces 15%

Coupling # provided + required symbols 15%

direct cyclic dependencies 15%

Testability Configuration space (prov. + req. VPs) 10%

Shareability # missing symbols in other releases 10%

Locality of Change % single module streams 20%

2 February 2016

Slide 15

Public

Submetric 3: provided + required interface symbols

Measures: number of provided + required

symbols

Rationale: minimize coupling with other

modules

Range: 0 – 10000 symbols

Lower is better

Biases: Could lead to duplicate functionality (reducing

coupling); No distinction essential/accidental dependencies;

Hidden dependencies not counted.

Property Metric Weight

Interface stability Change frequency provided interfaces 15%

Change frequency required interfaces 15%

Coupling # provided + required symbols 15%

direct cyclic dependencies 15%

Testability Configuration space (prov. + req. VPs) 10%

Shareability # missing symbols in other releases 10%

Locality of Change % single module streams 20%

2 February 2016

Slide 16

Public

Submetric 4: cyclic dependencies

Measures: number of interfaces causing a cycle

between two modules.

Ref: Acyclic Dependencies Principle (ADP)

Rationale: Minimize coupling, prevent upgrade

dependencies and contributes to binary integration.

Range: 0-100 interfaces

Lower is better.

Bias: Accountability issue (account to A or B?)

Could lead to duplicate functionality to reduce

coupling; Direct cycles only;

Could lead to smaller modules.

A

B
“Undesired” direction can

be configured.

Property Metric Weight

Interface stability Change frequency provided interfaces 15%

Change frequency required interfaces 15%

Coupling # provided + required symbols 15%

direct cyclic dependencies 15%

Testability Configuration space (prov. + req. VPs) 10%

Shareability # missing symbols in other releases 10%

Locality of Change % single module streams 20%

2 February 2016

Slide 17

Public

Submetric 5: configuration space

Measures: multiplication of number of

values of module’s variation points.

Ref: Open Closed Principle (OCP)

Rationale: lower scores indicates that it’s

easier to test all possible configurations of a

module.

Range: 0 - 110

Lower is better, this can be a huge number,

therefore its 10-base log is used as metric.

Biases: Assumes all variants are orthogonal. Discourages

adding more (configurable) functionality.

Property Metric Weight

Interface stability Change frequency provided interfaces 15%

Change frequency required interfaces 15%

Coupling # provided + required symbols 15%

direct cyclic dependencies 15%

Testability Configuration space (prov. + req. VPs) 10%

Shareability # missing symbols in other releases 10%

Locality of Change % single module streams 20%

2 February 2016

Slide 18

Public

Submetric 6: missing symbols for shareability

Measures: average number of symbols

required by the mainline version of the

module, but missing in selected releases

Ref: Release Reuse Equivalence Principle

(REP)

Rationale: module can more easily be

“plugged” into other releases.

Range: 0 – 2000 symbols

Lower is better.

Biases: Semantics not covered.

Property Metric Weight

Interface stability Change frequency provided interfaces 15%

Change frequency required interfaces 15%

Coupling # provided + required symbols 15%

direct cyclic dependencies 15%

Testability Configuration space (prov. + req. VPs) 10%

Shareability # missing symbols in other releases 10%

Locality of Change % single module streams 20%

2 February 2016

Slide 19

Public

Submetric 7: % single module streams

𝐼𝑛𝑑𝑒𝑥(𝐴) =
streams 𝑜𝑛𝑙𝑦 affecting 𝐴

all streams affecting A

Ref: Common Closure Principle

Rationale: a high score indicates that the

module can evolve independently.

Range: 0 – 100%

Higher is better

Bias: captures process-oriented aspects, does not cover

multiple single-module streams for the same function.

Measures: Locality of Change for module A:
Property Metric Weight

Interface stability Change frequency provided interfaces 15%

Change frequency required interfaces 15%

Coupling # provided + required symbols 15%

direct cyclic dependencies 15%

Testability Configuration space (prov. + req. VPs) 10%

Shareability # missing symbols in other releases 10%

Locality of

Change

% single module streams 20%

2 February 2016

Slide 20

Public

Deployment of modularity improvement

ASML has a roadmap to transform the monolithic archive in modular software

Now 6 independent macro modules, covering ~25% of the software.

Modularity metric used to steer the remaining 75% to be come sufficient

modular.

The owners of candidate

modules define their

target for modularization

