-~

pr——— re modularity metric
‘@/ : : Joost Zonneveld
o Bram Schoenmakers

2016-02-02

“

~ ASML In 40 Seconds ASML

2 February 2016

5 New devices, new applications ASML

S Public
- Slide 3
— 2 February 2016

Imaging drone to monitor

crop growth and vield (imec) _ Textile integrated

health patch

Cell sorter to detect

Wearable sensors metastization (imec)

(Holst Centre)

Micro mirrors for
beamers (TI)

Lab on a Chip (LOC) for
counting red blood cells

monitoring (Samsung)

On-Chip DNA amplification and
detection (imec/Panasonic)

' Characteristics driving Twinscan SW architecture ASML

Public
Slide 4
2 February 2016

Continuous
enhancement
after release

) Concurrent
= ¢ development by
: JFAA-Q“ Q¥ : o
AAAAAA b f} 2 t&g e 1000 SW
g 3 3/ engineers

aaaaaaaa

NXeight ~ Dreamliner

Product A\ casing
Family .

/a ASML Twinscan software facts and figures ASML

o Public

= Slide 5
P 2 February 2016

,, Architecture

» Specified (not derived) using ASML Architecture Description Language
» Different perspectives (software layers, litho functions, product variants)
» Build time enforced: not according to ADL - can not be built

« Explicit interfaces, specified with ASML IDL
« Focus on macro modularity and micro modularity

Patterns and tools for
Data, Control and Algorithms
Implementation

« 50 MLoc, mostly C, C++ 1, Python 1 and Matlab?
« 2200 components, 11000 interfaces
« About 8 DSLs with code generation.

ﬂ Objectives for modular software ASML

o Public

_— Slide 6
e 2 February 2016

- What
« Scalable software, support growing product and growing company
* Reuse functionality across releases
« Support outsourcing/OEM development

System of Systems

How: System of Systems approach: = tomotive demain

« Develop modules like developing a system.
« Maximum ownership / empowerment
» Local optimization possibilities (process, tools, branching)
» Focused on module’s core business
» Local technology phase in/out

TDI Diesel
B, EA288

« Develop Twinscan by integrating / reusing modules
« Decentral what can be, central what must be (efficiency, consistency)

5 Intro: Module ASML

i Public

F Slide 7
— 2 February 2016

Module properties Module definition

c%%?gr?? / ? ? Provided interfaces
Separation of
SO Module A

Independent
Reusable development
(across / Locality of
releases) change

Minimum
dependencies

Interfaces become
external to the module if

{Com ponents} used by another module

fl\ f"\ Required interfaces

A module is a (virtual) collection of ASML SW
components.
A module is considered a black box.

Target: 25 - 50 macro modules

5 Intro: Interfaces I~ ASML

S T Public
i : Slide 8
— 2 February 2016

Interface is a contract between two or more modules
The contract is stored in one of the modules

Semantics

[Protocol State Machines (POC.

Interface

#changes
can be counted

2500 inter module interface
(of 10000 total)

An interface change is backward compatible if
client sources/binaries need no adaption

Depending on source integration o
binary integration

#symbols
can be counted

/a Intro: Reuse module across releases ASML

Public
— Slide 9

e

e 2 February 2016

Since 2015 Before 2015

Share functionality
by merging between
monolithic system
archives

New feature

* Now: reuse sources, build the whole system ' \merge

Plan: reuse binaries (.2

ﬂ Measure modularity ASML

_— P Slide 10
e 2 February 2016

A modularity metric was developed to estimate modularity.
« Steer towards:

Suitable external
“” Reuse of modules across releases metric was searched
but not found

J&&Zﬂ Independent module evolution
;(Comprehensibility, minimize complexity
« Assess whether a prospect module is ready for an independent archive

I metric is not a goal, but a means to show modularity improvement.

Ref: You Are What You Measure (Hauser, Katz)

http://www.mit.edu/~hauser/Papers/Hauser-Katz Measure 04-98.pdf
http://www.mit.edu/~hauser/Papers/Hauser-Katz Measure 04-98.pdf

ﬂ Modularity metric design guidelines ASML

g Slide 11
e 2 February 2016

» Discourage small modules
(lesson learned from industry partner)

* Prevent modules to become smaller and smaller
(lesson learned from interface metric)

« Applicable for multiple abstraction levels

* Minimize biases that cause wrong conclusions / allow gaming

* Insensitive to relative position of module in hierarchy

« Measurable with reasonable cost/overhead

* Prefer snapshot measurements over measurement over time
 Prepared for binary integration (availability of source files not required)

& Calculation of the metric: weighted sum of 7 submetrics ASML

. Public
_— Slide 12
ez 2 February 2016

Value of submetric m, range:
[0,1]

Modularity metric of module A Nﬁ lviw/_mw_

Modularity metric(4) = < z m(A) * W(m)> * C(Asize)

meMetrics /\

Correction factor based on size
of module A.
Lower for smaller modules

Mix of submetrics reduces vulnerability for gaming

& Submetric 1: change frequency provided interfaces ASML

—— Public
—a Slide 13
2 February 2016

RO (:cvica ntertaces i the past yomr.
provided interfaces in the past year.
Interface stability = Change frequency provided interfaces 15%

Ref: Open Closed Principle (OCP)

Rationale: minimize client impact when
upgrading.

Range: 0 — 10 changes per year

Lower is better.

Biases: favors large interfaces; favors overly abstract
interfaces; discourages interface refactoring. Does not
cover semantics. Compatible and incompatible changes
are treated equally.

s |

Interface stability

Change frequency required interfaces

15%

" Submetric 2: change frequency required interfaces ASML

Public
Slide 14
2 February 2016

Measures: sum of number of changes to
required interfaces in the past year.

Ref. Stable Dependencies Principle (SDP)

Rationale: stability contributes to binary
integration. Both sides are participants in the
interface contract.

Range: 0 — 20 changes per year

Lower is better.

Biases: See previous slide + Could lead to duplicate
functionality (reducing coupling)

"1 Submetric 3: provided + required interface symbolsrj\ L ASML

Public
Slide 15

2 February 2016

symbols

Rationale: minimize coupling with other

modules
Coupling # provided + required symbols 15%

Range: 0 — 10000 symbols

Lower is better

Biases: Could lead to duplicate functionality (reducing
coupling); No distinction essential/accidental dependencies;
Hidden dependencies not counted.

& Submetric 4: cyclic dependencies ﬁ ASML

Public
Slide 16

:t: - 2 February 2016
between two modules.
Ref: Acyclic Dependencies Principle (ADP)

Coupling Rationale: Minimize coupling, prevent upgrade
dependencies and contributes to binary integration.
direct cyclic dependencies 15%

Range: 0-100 interfaces

Lower is better.

Bias: Accountability issue (account to A or B?)
Could lead to duplicate functionality to reduce
coupling; Direct cycles only;

Could lead to smaller modules.

“Undesired” direction can
be configured.

& Submetric 5: configuration space ASML

Public
Slide 17
2 February 2016

Sl /c2ores: muliplication of number of

values of module’s variation points.

Ref: Open Closed Principle (OCP)

Rationale: lower scores indicates that it's
easier to test all possible configurations of a

module.
Testability Configuration space (prov. +req. VPs) 10%

Range: 0 - 110

Lower is better, this can be a huge number,
therefore its 10-base log is used as metric.

Biases: Assumes all variants are orthogonal. Discourages
adding more (configurable) functionality.

m! Submetric 6: missing symbols for shareability ASML

Public
Slide 18
2 February 2016

required by the mainline version of the
module, but missing in selected releases

Ref. Release Reuse Equivalence Principle
(REP)

Rationale: module can more easily be
“plugged” into other releases.

Shareability # missing symbols in other releases 10%

Range: 0 — 2000 symbols

Lower is better.

Biases: Semantics not covered.

'1 Submetric 7: % single module streams 20— ASML

a8 > Public
Slide 19
2 February 2016

il ezsuires: Locality of Change for module A

streams only affecting A

Index(A) =
ndex(4) = T streams affecting 4

Ref: Common Closure Principle

Rationale: a high score indicates that the
module can evolve independently.

Range: 0 — 100%

Locality of % single module streams 20% _)
Change Higher is better

Bias: captures process-oriented aspects, does not cover
multiple single-module streams for the same function.

5 Deployment of modularity improvement ASML

i Public
— Slide 20

— =

 ASML has a roadmap to transform the monolithic archive in modular software
Now 6 independent macro modules, covering ~25% of the software.

Modularity metric used to steer the remaining 75% to be come sufficient
modular.

Modularity Index

The owners of candidate
modules define their
target for modularization

