
Virtual Prototyping 
45th System Architecture Study Group  

 

Jos Verhaegh 

June 5th   2012 

 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

2 

Contents 

NXP Semiconductors 

Virtual platforms 

Modeling Methodology & Libraries 

Application of Virtual Platforms in NXP 

Conclusions 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

3 

Contents 

NXP Semiconductors 

Virtual platforms 

Modeling Methodology & Libraries 

Application of Virtual Platforms in NXP 

Conclusions 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

4 

NXP Semiconductors  

President & CEO: Rick Clemmer 

Headquarters: Eindhoven, The Netherlands 

Established in 2006 (formerly a division of Philips)  

50+ years of experience in semiconductors 

Focus: High Performance Mixed Signal products 

 

Businesses:  

– Automotive 

– High Performance Mixed Signal 

– Identification 

– Standard Products 

 

Owner of NXP Software, a fully independent 

software solutions company 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

5 

System Design Challenges – Examples 

RFA 

RFB 

DP 

VSS VDD SA SB SDA SCL IO2 IO1 

CLK 

DM 

AMS IP Digital IP 

Baseband 

USB 
controller 

RF  
PHY 

RF  
PHY Central Processing  

Unit (CPU) 

HW 
accelerator  

Memory  

Power Management 
Unit ADC I2C 

HSIO 
contr. Clock 

generation 

USB 
PHY 

bridge 

HSIO 
PHY 

Identification 
products 

Automotive 
products 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

6 

System Design Challenges – Examples 

RFA 

RFB 

Baseband 

DP USB 
controller 

VSS VDD 

RF  
PHY 

RF  
PHY Central Processing  

Unit (CPU) 

Memory 

Power Management 
Unit 

SA SB 

ADC 

SDA SCL 

I2C 

IO2 IO1 

HSIO 
contr. CLK Clock 

generation 

DM 

HW 
accelerator  

USB 
PHY 

bridge 

HSIO 
PHY 

Multi-standard 

Digital-assisted 
analog 

Safety &  
reliability 

Low Power 
design 

AMS IP Digital IP 

Security 

 Hardware dependent 
software 

Embedded 
AMS system 

Identification 
products 

Automotive 
products 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

7 

Contents 

NXP Semiconductors 

Virtual platforms 

Modeling Methodology & Libraries 

Application of Virtual Platforms in NXP 

Conclusions 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

Virtual platforms 

8 

Baseband 

USB 
controller 

RF  
PHY 

RF  
PHY Central Processing  

Unit (CPU) 

Memory 

Power Management 
Unit ADC I2C 

HSIO 
contr. Clock 

generation 

HW 
accelerator  

USB 
PHY 

bridge 

HSIO 
PHY 

AMS IP 

Digital IP 

Simulation model of real hardware at high abstraction level 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

Instruction Set Simulator (ISS) 
 Simulation model of embedded processor 

– Typically provided by core vendor ( ARM, 

Tensilica,… ) 

Executable software image identical to final 

image running on silicon (Binary compatible) 

Allows to connect to SW debugger ( ARM 

Realview, Keil uVision, Lauterbach,…) 

9 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

Transaction Level Modelling 

10 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

Reference platform generation 

11 

Initial SystemC platform automatically 
generated from system register map 
(consistent with RTL) 

Generated SystemC reference platform 
contains ISS  

The Reference platform is ready for basic SW 
development (register read/write behavior) 

Behavior can be added to SystemC IP model 

templates 

 

System Memory 
map specification 

Toplevel/module 
generator 

Toplevel/module 
sources 

Manually refined 
modules 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

IEEE 1666-2005 SystemC 

a set of C++ classes and macros which enables  
hardware description constructs in C++ 

provide an event-driven simulation kernel in C++ 
 

OSCI TLM 2.0 

Transaction level modeling of communication 
 between digital modules 

Function calls abstract away pin level signals 
 

SystemC Modeling Library (SCML) 

Reduce the modeling effort and learning curve  

Enable model reuse and refinement 

 

OSCI SystemC-AMS 1.0 

To abstract analog behavior and communication 

 

SystemC standards & libraries 

12 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

13 

Contents 

NXP Semiconductors 

Virtual platforms 

Modeling Methodology & Libraries 

Application of Virtual Platforms in NXP 

Conclusions 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

14 

Modeling paradigm 

Multidimensional problem 

How to model for maximum speed? 

How to model for full accuracy? 

How to minimize the modeling effort? 

How to make models reusable? 

How to deal with legacy models? 

… and how to achieve all this in a simple way? 

Different kind of models with different properties: 

Processor models  

Interconnect models  

Memory subsystem models 

Peripherals  

► Need for clear modeling strategy based on standards 

 

Speed 

Accuracy 

Effort 

Reusability 
Availability 
Simplicity 

Observability 
Controlability 

…. 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

15 

Minimizing the modeling effort  
(…and making models available earlier) 

Simplify modeling 

Methodology and guidelines  

Separation of concerns  

Predefined building blocks (Modeling libraries) 

Standards based modeling 

TLM2.0 compliancy for Interoperability between models (released std) 

CCI compliancy for standardized configuration, control & inspection of models (under dev) 

To enable building of re-usable models (model portfolio) 

To enable easy integration of 3rd party models 

Automatic generation 

Translate RTL into CA SystemC (SL) by using Carbon tooling 
– Suitable for verification & performance analysis,  

but too slow for SW development use case 

Generate modeling template (user only fills specific functionality)  

Generation/wrapping from functional tools/model  
– CoWare SPD, Matlab Simulink, legacy C++ 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

16 

Modeling for speed 

speed 

Cycle-Accurate ISS 

Instruction-Accurate ISS 

Code-Morphing ISS 

Host Code Emulation 

100-10 KHz 

10-1 MHz 

100 MHz 

Minimize the number of events/context switches 

Coarse grain communication 
– Model cycle-by-cycle communication only when strictly required 

Coarse grain computation 
– Group timed operations, call wait(…) only when synchronization is required 

Careful usage (strategy) of sc_threads, sc_methods, sc_events, etc 

Avoid (at all) using sc_clocks 

Efficient code 

Profiling tools (gprof, vtune) 

Efficient SystemC kernel 

Parallel/distributed implementation 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

17 

Modeling accuracy 

Functional accuracy is not an issue 

Test strategy is mandatory (qualification) 

Loosely timing can be modeled easily 

Time can be estimated or extracted from existing models 

For many use cases is enough! 

Approximate and Cycle Accurate timing is very hard to achieve  

Manual modeling (it can be as hard as RTL)  

Automated techniques (extraction from RTL to TLM) 

Define accuracy windows, window size depends on the use-case 

Verification requires 100% accuracy, i.e. window size is 1 cycle 

Window size for bus exploration should be 1-10 cycles, accuracy >90% 

Window size for software performance measurement can be >100k cycles, accuracy >90% 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

18 

Coding Styles 

Loosely-timed 
– Only sufficient timing detail to boot O/S and run multi-core systems 

– Processes can run ahead of simulation time (temporal decoupling) 

– Each transaction has 2 timing points: begin and end 

– Uses direct memory interface (DMI) 

 

Approximately-timed 
– aka cycle-approximate or cycle-count-accurate  

– Sufficient for architectural exploration 

– Processes run in lock-step with simulation time 

– Each transaction has 4 timing points (extensible) 

 

Guidelines only – not definitive 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

19 

time 0 1 2 3 4 5 6 7 8 

UT 

T1 T2 

(T) transaction  (function call) 

LT T1 
T2 

AT 
request1 request2 

response1 response2 

CA 

address1 

data1 

address2 

data2 

status1 status2 

OSCI transaction level Modeling styles (II) 

No timing 
only ordering 

2 timing points 
No pipelining 

4 timing points 
Pipelining 

one-to-one 
correspondence 

between the 
states of the 
model and a 

RTL reference 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

20 

Use Cases, Coding Styles and Mechanisms 

Blocking 
interface 

Non-blocking 
interface 

DMI Sockets Quantum  
Generic 
payload 

Mechanisms 

Use cases 

Software 
development 

Architectural 
analysis 

Hardware 
verification 

Software 
performance 

Loosely-timed 

Approximately-timed 

TLM-2 Coding styles 

Phases 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

21 

Objectives modeling libraries: 

Reduce the modeling effort and learning curve  

Enable model reuse and refinement 

Improve configurability of models  

Align with industry standards  
– OSCI TLM 2.0 & CCI 

SystemC AMS extensions library available 

IEEE 1666 SystemC 

TLM 2.0 SCV 

SCML 

IF adaptors monitors 

SCML – CoWare SystemC modeling Library 
• Separation of behavior, communication & timing 

• Focus on communication refinement 
  generic interfaces + specific adaptors 

TLM 2.0 

IEEE 1666 SystemC 

AMS 

Layered modeling approach 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

22 

SystemC Modeling Library (SCML) 

SystemC v2.2 

• Hardware focused 

• Modules 

• Channels 

• Threads 

• Signals 

SCML 

• Raise modeling 
abstraction 

• Minimize modeling effort 

• Memory map focus 

• Functionality visible to 
SW developers 

Virtual Platforms 

• Fast processor models 

• Debugging 

• SW analysis 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

23 

Why SCML? 

SCML goals 

Simulation speed 
– Enable ‘backdoor’ access (supported by TLM2.0 DMI) 

Ease of modeling 
– Abstraction through modeling objects 

– Configuration through properties 

Debugging & analysis 
– Visualization in VPA 

– Standardized modeling style 

Interoperability 
– Source code version of library available 

Reuse  
– Support multiple use cases 

Maintainability 
– Enforced modeling style to guarantee maintainability  

 

 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

24 

TLM2.0 LT use case related 

SCML overview 

Target 
objects 

memory 

alias 

register 

bitfield 

router 

adapters 

Initiator 
objects 

dmi_handler 

socket 

post interface 
& port 

array  

fifo 

pool 

Clock 
objects 

Clock 

divided_clk 

clk_counter  

clk_gate 

Utilities 

Commands 

Loader 

Properties 

Property 
server 

Task 
modeling 

Event 

Task 

Scheduler 

Processing 
model 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

25 

SCML overview  

initiator target 

T
L

M
2

 G
P

 L
T

 b
u

s
 

dmi_handler 

Quantum keeper Initiator socket 

target socket 

target adapter 

memory 

memory_alias 
register 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

26 

SCML Target Modeling Pattern 

TLM Target        

timing 

behavior TLM2.0 
target 

adapter 
 

timing 

storage and 
synchronization 

TLM2.0 
interface 

TLM2.0 GP 
interface 

TLM2.0 GP 
interface 

TLM2.0 
bus 

transaction 
processing 

behavior1 

behavior2 

behavior3 

storage alias 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

27 

Automated System Integration 

IP Delivery Design Environment 

• IP packaging 
• Design integration 

• RTL/TLM netlist generation 
• Verification software generation 

• PSL assertion generation 

• Documentation generation  
• Build and simulation automation 
• Third party IP and tool integration 

System Integration Automation 

Design Views 

RTL 

VERIFICATION 

METADATA 

DOCUMENT 

SLMODEL 

Mixed Language 
VHDL Verilog 

SystemC 

Mixed Level 
RTL & TLM 

Mixed Signal 
Verilog-AMS 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

28 

Contents 

NXP Semiconductors 

Virtual platforms 

Modeling Methodology & Libraries 

Application of Virtual Platforms in NXP 

Conclusions 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

Early SW development on SystemC platform 
Introduction 

NXP products contain both hardware and software 

The software is executed by the hardware 

 

Different types of software development in NXP 

Firmware, driver software, middleware, … 

 

Traditionally software development starts when 

hardware is available  

RTL, FPGA, silicon,… 

 

29 

System Design HW Design 
HW 

Implementation 
SW Design 

SW 
Implementation 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

Early SW development on SystemC platform  
Our contribution & added value 

Our contribution is virtualization of hardware platforms 

Early availability of hardware models for software development 

Existing software development environment can be used with virtual platform 

 

Our added value is to reduce product development times 

Software development can start before hardware RTL model is available 

 

 

 

 

 

 

 

 

 

30 

Virtual platform SW Design 
SW 

Implementation 

System Design HW Design 
HW 

Implementation 

System Design HW Design 
HW 

Implementation 
SW Design 

SW 
Implementation 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

31 

Early SW development on SystemC platform 

advantages 
Shorter TtM  

Early SW development when RTL/Si is not available yet 

Concurrent HW/SW development  
 

Real High speed SW development environment 

Fast ARM/Keil models  

Binary compatible with final SW on Si 

SW debug capabilities using RVD/Keil uVision  
 

Better product quality 

Synchronized debug environment between Hard- and Software 

Full visibility inside SW on CPU (ARM RVD/Keil uVision), inside RTL (SimVision) and 
TLM testbench 

Ability to simulate complete system 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

32 

Early SW development on SystemC platform 

ARM 
Cortex-M0 

IA ISS 

APB 
bridge 

IP1 
 

IP2 
 

IP3 
 

 
 Analog 

intf 

 
 Clock 
Gen 

 
 Mode 
Contr 

 
 UART 

 
 GPIO 

 
 I2C 

 
 Scan tst 

contr 

AHB Bus Mtrx 

ROM RAM 
SC register view 

IA ISS  

SystemC TLM2.0 
Loosely timed  model 

RTL DUT 

CA ISS  

APB Bus  

reg view reg view reg view 

reg view reg view reg view reg view reg view reg view reg view 

Initial SystemC platform and target peripheral register views are automatically generated from system 
register map information  

Generated SystemC reference platform contains ISS of ARM Cortex M0 
– Keil ISS connected to uVision (windows only) 
– Fastmodel ISS connected to RVD (both windows and linux) 

An OS can be booted on the SystemC reference platform 

The Reference platform is ready for basic SW development (register read/write behavior) 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

33 

Early SW development on SystemC platform 

ARM 
Cortex-M0 

IA ISS 

APB 
bridge 

IP1 
 

IP2 
 

IP3 
 

 
Analog 

intf 

 
Clock 
Gen 

 
Mode 
Contr 

 
UART 

 
GPIO 

 
I2C 

 
Scan tst 

contr 

AHB Bus Mtrx 

APB Bus  

IP1 
 

reg view 

IP2 
 

reg view 

IP3 
 

reg view 

 
Analog 

intf 

reg view  
Clock 
Gen 

reg view  
Mode 
Contr 

reg view 
 

UART 

reg view 
 

GPIO 

reg view 
 

I2C 

reg view  
Scan tst 

contr 

reg view 

ROM RAM 

ROM 
intf 

 

RAM 
intf 

 

ROM RAM 

reg view reg view 

Behavior can be added to SystemC IP model templates 

The Reference platform is ready for further (driver/application) SW 

development 

SC register view 

IA ISS  

SystemC TLM2.0 
Loosely timed  model 

RTL DUT 

CA ISS  



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

Early SW development on SystemC platform 

HW/SW co-debugging 

34 

PN547 virtual platform 

Test environment 

HW model debugger 
(Visual Studio) 

SW debugger 
(ARM RVD/Model debugger) 

Test 
database 

HW register  
values 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

35 

Architecture exploration on SystemC platform 

Performance metrics based on transactions rather than signals 

Simplifies performance analysis 

Need monitors that translate signal level to TLM 
 

Fast modeling of traffic generators and other IPs 

Generic IP models can be used 

IP models can be highly configurable 

Abstract behavior sufficient 
 

Easy debug of HW/SW  

Full visibility inside SW on CPU (ARM RVD/Keil uVision), inside RTL (SimVision) and TLM testbench 

C++ debugging of IP models 
 

Higher simulation speed than RTL 

Abstracted behavior simulates faster 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

36 

AHB Bus Mtrx 

ROM 
intf 

 

RAM 
intf 

 

ROM RAM 

reg view reg view 

ARM 
Cortex-M0 

IA ISS 

IP1 
 

IP2 
 

IP3 
 

 
Analog 

intf 

 
Clock 
Gen 

 
Mode 
Contr 

 
UART 

 
GPIO 

 
I2C 

 
Scan tst 

contr 

Architecture exploration on SystemC platform 

ARM Cortex M0 Instruction Accurate ISS is replaced by Carbon Cycle Accurate ISS 

Critical components for Performance analysis are replaced by their RTL counterpart 

Performance analysis is done through co-simulation 

ARM 
Cortex-M0 

CA ISS 
(Carbon) 

APB 
bridge 

APB Bus  

reg view reg view reg view 

reg view reg view reg view reg view reg view reg view reg view 

ROM 
interf 

RAM 
intf 

AHB Bus Mtrx 

ROM RAM 

AHB 
TX 

Mon. 

SC register view 

IA ISS  

SystemC TLM2.0 
Loosely timed  model 

RTL DUT 

CA ISS  



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

37 

IP1 
 

IP3 
 

 
Analog 

intf 

 
Clock 
Gen 

 
Mode 
Contr 

 
UART 

 
GPIO 

 
I2C 

 
Scan tst 

contr 

RTL IP verification using SystemC platform 
 

RTL IP functional verification through 

Reuse of SystemC platform for SW development  

Reuse of co-simulation setup for architecture exploration 

ARM 
Cortex-M0 

IA ISS 

ROM 
interf 

 

RAM 
intf 

 

APB 
bridge 

AHB Bus Mtrx 

ROM RAM 

APB Bus  

reg view reg view 

reg view 

IP2 
 

reg view 

reg view 

reg view reg view reg view reg view reg view reg view reg view 

IP2 

TLM2SL 
TX 

SC register view 

IA ISS  

SystemC TLM2.0 
Loosely timed  model 

RTL DUT 

CA ISS  



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

RTL System verification with Reusable Test 

Infrastructure (RTI) 

 ARM FastModel Cortex-M3 (Instruction-accurate ISS) 

– Includes interrupt controller 

– Includes software compilation tool chain 

– Includes software debug solution 

TLM bus 

TLM memory (ROM and RAM) 

TLM timer (WDG and TIM) 

TLM-to-AHBlite signal slave transactor 
– Includes AHB clock and reset 

TLM clock generator 

TLM reset generator 

TLM CREG I/O 

 

 

 

 

38 
*TLM: Transaction Level Model 

*IRQ: Interrupt request 

 

BUS ARM irq 

RAM 

WDG 

AHB 

AHB 

AHB 

CREG 

TIM 

ROM 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

RTL System verification with Reusable 

Test Infrastructure (RTI) 

39 

 

 

 

Coproc1 

CoProc2 

RAM 32KB 

 

RAM 32KB 

 

RAM 16KB 

 

SSP 

UART 

I2C 

ARM M3 

RAM 16KB 

 

ARM 
RTI 

ahb2vpb 

ahb2vpb 

ahb2vpb 

usart ip 

ssp ip 

i2c ip 

RTL Design 

RTI 

DMA 

msg 

msg 

1 

msg 

msg 

2 

3 

4 

5 

C
H

E
C

K
!!
 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

40 

Contents 

NXP Semiconductors 

Virtual platforms 

Modeling Methodology & Libraries 

Application of Virtual Platforms in NXP 

Conclusions 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

41 

Conclusions 

BL usage in different projects shows the added value of 

virtual platforms (TtM, TtV, quality) 

Standards based SystemC modelling methodology enables 

easy creation and maintainability of abstract system level 

models 

IP-XACT based Automatic System Integration and 

Generation is key 

Virtual platforms serve a wide variety of use-cases 

 

 

 



Virtual Prototyping/ NXP Design Methodologies /  Jos Verhaegh, June 5th 2012  

THANKS 

Questions? 

42 




