Using scripting languages in products
can accelerate change'!

SASG meeting 7-feb-2012
Tom Hoogenboom, ASML

Public

Here are some statements to start off discussions

* For some reason script languages
have always been popular

* except with ‘real’ programmers

* Today | present some statements claiming
that use of scripting languages,
compared to conventional languages,
can accelerate change

* with only marginal disadvantages...

* Please consider why you agree / disagree
with these statements - - discussion . . .

Disclaimer: These slides are designed to trigger ; :
discussion and do not necessarily express the Slide 2 l Public
opinion of the author or ASML.

Summary

Historical perspective

There are many popular ones

Scripting languages are not for serious programming

Scripting languages can accelerate change

Slide 3 | Public

Summary

= » Historical perspective

* There are many popular ones

e Scripting languages are not for serious programming

* Scripting languages can accelerate change

Slide 4 | Public

Scripting languages are
as old as the computer

Slide5 | Public

//upload.wikimedia.org/wikipedia/commons/1/1c/PDP_8_e_Trondheim.jpg

Scripting languages are as old as the computer

* From my memory
1973: FOCAL on PDP-8

Sample session with Focal on a PDP

FOCAT.1S WeB

*01.10 ASK "IN WHAT YEARR WERE ¥YOU BORNZ?™, YEAR

*01.20 5ET YEAROFFOCAT~YEAR-13o5+1

*01.30 IF (YEAROFROCATL) 02.10,02.10,01.40

*01.40 TYPE "¥YOU WERE BCORN IN THE YEAR ", YEAROFFOCATL, ™ OF FOCALI™, !
*01.50 =0T0 01.10

*02.10 TYPE "¥OU ARE TOO OLD FOR FOCAT., BOES™, !

*0Z.Z20 =0T0 01.10

*=0
IN WHAT YEAR WERE ¥0OU BORNZ:15c%
YOU WERE BCORN IN THE YEAR 1.0000 OF FOCAT!

IN WHAT YEAR WERE YOU BORNZ:1550
¥YOU ARE TOOD OLD FOR FOCAT., POPS
IN WHAT YEAR WERE ¥OU BORNZ:

This program takes your year of birth and calculates what year AF. {after Focal) you were born in.

Slide 6 |

Another early example:
1975: FORTH, on ‘any computer’

* 1975: FORTH on any computer
Example: 6809 structured assembler / disassembler:

\ Structured assembler constructs.

: IF >R A; R> C, >MARK ;

: THEN A; >RESOLVE ;

: ELSE A; $20 C, >MARK SWAP >RESOLVE ;

: BEGIN A; <MARK ;

: UNTIL >R A; R> C, <RESOLVE ;

: WHILE >R A; R> C, >MARK ;

: REPEAT A; $20 C, SWAP <RESOLVE >RESOLVE ;
: AGAIN $20 UNTIL ;

* example, today: Sun Sparc console command interpreter/OLPC
case Statement

[value)
oaze

2 of " it was two" endof

0 of "™ it was zero" endof

it was " dup . [optional defaunlt clause)
endocase

Slide 7 | Public

Extreme scripting: MasterMind in APL

(A Programming Language (?))

mmind+{ A Mastermind or "cows and bulls".
"w v 2 (pw)tO+s"x+ " fRe{(at+.=w) ,a{+/2/+/ (cua)eo,. =" (azw)o/ "o wiw}ll:v w

}

Slide 8 |

Summary
* Historical perspective:
scripting languages have always been popular
= » There are many popular ones

e Scripting languages are not for serious programming

* Scripting languages can accelerate change

Slide 9 | Public

-’

o

& - can be deployed in an embedded system (or are specifically designed for that purpose)

Have you heard of all of these?

AppleScript Game Maker Language (GML) R

AWK Groovy REBOL
Bash ICI Revolution
BeanShell lo REXX
Candle JASS Ruby

Ch (Embeddable C/C++ interpreter) [Javascript sed

CLIST Join Java S-Lang

CMS EXEC Lua Smalltalk
ColdFusion MAXScript Tcl

DCL MEL Tea
ECMAScript Mondrian TorqueScript
EXEC 2 Mythryl Unix Shells
Falcon Perl VBScript
Fancy PHP (for Web servers) Winbatch
Frink Pikt Windows PowerShell
F-Script Python Matlab

- perform well

- have reasonable run-time support

Slide 10 |

Summary

* Historical perspective:
scripting languages have always been popular

* There are many popular ones
so they must be useful

= o Scripting languages are not for serious programming

* Scripting languages can accelerate change

Slide 11 | Public

Scripting is not for serious programming

* Typical applications:
* Command Line Interpreter (low level / no GUI)
GUI activity logging & playback

Testing and debugging
* SW Oscilloscope
* Insert SW test points

SW not worth coding
* Test SW, factory only SW, R&D SW

Customization
* by customer at the expense of customer support

* by customer support at the expense of development

Slide 12 | Public

Summary

Historical perspective:
scripting languages have always been popular

* There are many popular ones
so they must be useful

e Scripting languages are not for serious programming
but its applications are serious enough

=P « Scripting languages can accelerate change

Slide 13 | Public

But scripting languages can beat Brooks*

e Brooks claims

* A product (more useful than a program costing x€):
* can be run, tested, repaired by anyone
* usable in many environments on many sets of data.
* must be tested
* needs documentation

* Brooks estimates a cost increase to 3x€.
 To be a component in a programming system
(collection of interacting programs like an OS):

* input and output must conform in syntax,
semantics to defined interfaces

* must operate within resource budget

* must be tested with other components to check integration
(very expensive since interactions grows exponentially in n).

* Brooks estimates that this too costs 3x.

So same functionality, cost increases to 9x€

i : lide 14 Publi
*) Frederick P. Brooks, Jr, the mythical man—montﬁ,I ° | ublic

ISBN 0-201-00650-2, Addison-Wesley, 1975

Scripting languages can reduce
factors ‘x’ and ‘3’ in 3x

* Perhaps 3 2 2.5,
X =2 x*0.72

* totalgain 9 - 4.5 or 50% cost reduction
* How?
* Easier/quicker integration and testing

* No lengthy compiles and builds
* any configuration will run

e scripting (develoipment/debugging) can run in
parallel to production environment
with minimal disturbance

* No need for 100% defined interfaces
* excess parameters are ignored
* Tolerant to simple failures
* interpreter keeps running at all times
* Easier to add people to the project
* real programmers are hard to find
* Fewer people involved
* less complex communication
Allows for experiments
* the best solution can persist

* So less cost, faster delivery of functionality

Slide 15 | Public

Statements (True/False):
Scripting languages can accelerate change!

* Use scripting languages whenever you can

* interface at the highest possible level (‘magnification’)
or hide lower levels (‘lens actuator x’)

* Use coding standards to avoid known pitfalls

* works for C/C#/Java..., so why not for Perl/Python/...?
* Plan to throw one away (you will anyhow...)

* code in Perl/Python/...

* refactor once in Perl/Python/...

* only if result is OK and business case is solid
then cast in C/C#/Java... stone

* Customers/Customer support can
* can debug themselves
* can make repairs or workarounds themselves

* can insert better solutions that developers can

e product becomes more fun to use
* no more need to wait for patches from vendor

Slide 16 | Public

Final Summary

Historical perspective:
scripting languages have always been popular

* There are many popular ones
so they must be useful

e Scripting languages are not for serious programming
but its applications are serious enough

* Scripting languages can accelerate change
and beat Brooks’s mythical man-month

Slide 17 | Public

Next steps

* Please consider why you agree / disagree
with these statements - - discussion...

e Scripting languages have serious applications
e Scripting languages have few disadvantages

e Scripting languages can accelerate change
and beat Brooks’s mythical man-month

Slide 18 | Public

