
Public

Using scripting languages in products

can accelerate change !

SASG meeting 7-feb-2012

Tom Hoogenboom, ASML

V3

Public Slide 2 |

Here are some statements to start off discussions

• For some reason script languages

have always been popular

• except with ‘real’ programmers

• Today I present some statements claiming

that use of scripting languages,

compared to conventional languages,

can accelerate change

• with only marginal disadvantages...

• Please consider why you agree / disagree

with these statements   discussion . . .

Disclaimer: These slides are designed to trigger
discussion and do not necessarily express the
opinion of the author or ASML.

Public Slide 3 |

Summary

• Historical perspective

• There are many popular ones

• Scripting languages are not for serious programming

• Scripting languages can accelerate change

Public Slide 4 |

Summary

• Historical perspective

• There are many popular ones

• Scripting languages are not for serious programming

• Scripting languages can accelerate change

Public Slide 5 |

Scripting languages are

as old as the computer

//upload.wikimedia.org/wikipedia/commons/1/1c/PDP_8_e_Trondheim.jpg

Public Slide 6 |

Scripting languages are as old as the computer

• From my memory

1973: FOCAL on PDP-8

Public Slide 7 |

Another early example:

1975: FORTH, on ‘any computer’

• 1975: FORTH on any computer
Example: 6809 structured assembler / disassembler:

. . .

\ Structured assembler constructs.

: IF >R A; R> C, >MARK ;

: THEN A; >RESOLVE ;

: ELSE A; $20 C, >MARK SWAP >RESOLVE ;

: BEGIN A; <MARK ;

: UNTIL >R A; R> C, <RESOLVE ;

: WHILE >R A; R> C, >MARK ;

: REPEAT A; $20 C, SWAP <RESOLVE >RESOLVE ;

: AGAIN $20 UNTIL ;

. . .

• example, today: Sun Sparc console command interpreter/OLPC

Public Slide 8 |

Extreme scripting: MasterMind in APL
(A Programming Language (?))

Public Slide 9 |

Summary

• Historical perspective:

scripting languages have always been popular

• There are many popular ones

• Scripting languages are not for serious programming

• Scripting languages can accelerate change

Public Slide 10 |

Have you heard of all of these?

- perform well

- have reasonable run-time support

- can be deployed in an embedded system (or are specifically designed for that purpose)

AppleScript Game Maker Language (GML) R

AWK Groovy REBOL

Bash ICI Revolution

BeanShell Io REXX

Candle JASS Ruby

Ch (Embeddable C/C++ interpreter) Javascript sed

CLIST Join Java S-Lang

CMS EXEC Lua Smalltalk

ColdFusion MAXScript Tcl

DCL MEL Tea

ECMAScript Mondrian TorqueScript

EXEC 2 Mythryl Unix Shells

Falcon Perl VBScript

Fancy PHP (for Web servers) Winbatch

Frink Pikt Windows PowerShell

F-Script Python Matlab

m
o
s
t:

Public Slide 11 |

Summary

• Historical perspective:

scripting languages have always been popular

• There are many popular ones

so they must be useful

• Scripting languages are not for serious programming

• Scripting languages can accelerate change

Public Slide 12 |

Scripting is not for serious programming

• Typical applications:

• Command Line Interpreter (low level / no GUI)

• GUI activity logging & playback

• Testing and debugging

• SW Oscilloscope

• Insert SW test points

• SW not worth coding

• Test SW, factory only SW, R&D SW

• Customization

• by customer at the expense of customer support

• by customer support at the expense of development

Public Slide 13 |

Summary

• Historical perspective:

scripting languages have always been popular

• There are many popular ones

so they must be useful

• Scripting languages are not for serious programming

but its applications are serious enough

• Scripting languages can accelerate change

Public Slide 14 |

But scripting languages can beat Brooks*

• Brooks claims

• A product (more useful than a program costing x€):

• can be run, tested, repaired by anyone

• usable in many environments on many sets of data.

• must be tested

• needs documentation

• Brooks estimates a cost increase to 3x€.

• To be a component in a programming system
(collection of interacting programs like an OS):

• input and output must conform in syntax,
semantics to defined interfaces

• must operate within resource budget

• must be tested with other components to check integration
(very expensive since interactions grows exponentially in n).

• Brooks estimates that this too costs 3x.

So same functionality, cost increases to 9x€

*) Frederick P. Brooks, Jr, the mythical man-month,
ISBN 0-201-00650-2, Addison-Wesley, 1975

Public Slide 15 |

Scripting languages can reduce

factors ‘x’ and ‘3’ in 3x

• Perhaps 3  2.5,
 x’  x*0.72

• total gain 9  4.5 or 50% cost reduction

• How?

• Easier/quicker integration and testing
• No lengthy compiles and builds

• any configuration will run

• scripting (develoipment/debugging) can run in
parallel to production environment
with minimal disturbance

• No need for 100% defined interfaces
• excess parameters are ignored

• Tolerant to simple failures
• interpreter keeps running at all times

• Easier to add people to the project
• real programmers are hard to find

• Fewer people involved
• less complex communication

• Allows for experiments
• the best solution can persist

• So less cost, faster delivery of functionality

Public Slide 16 |

Statements (True/False):

Scripting languages can accelerate change!

• Use scripting languages whenever you can

• interface at the highest possible level (‘magnification’)
or hide lower levels (‘lens actuator x’)

• Use coding standards to avoid known pitfalls

• works for C/C#/Java..., so why not for Perl/Python/...?

• Plan to throw one away (you will anyhow...)

• code in Perl/Python/...

• refactor once in Perl/Python/...

• only if result is OK and business case is solid
then cast in C/C#/Java... stone

• Customers/Customer support can

• can debug themselves

• can make repairs or workarounds themselves

• can insert better solutions that developers can

• product becomes more fun to use

• no more need to wait for patches from vendor

Public Slide 17 |

Final Summary

• Historical perspective:

scripting languages have always been popular

• There are many popular ones

so they must be useful

• Scripting languages are not for serious programming

but its applications are serious enough

• Scripting languages can accelerate change

and beat Brooks’s mythical man-month

Public Slide 18 |

Next steps

• Please consider why you agree / disagree

with these statements   discussion...

• Scripting languages have serious applications

• Scripting languages have few disadvantages

• Scripting languages can accelerate change

and beat Brooks’s mythical man-month

