

Success factors for Model Based Development at Océ

Toon van Dijk (June 5th, 2018) Department Manager Embedded Software

A CANON COMPANY

Why MBD ?

- Time To Market
- Product Characterisics
 - Quality
 - Cost
 - Power Consumption
 - Performance
 - Usability
 -
- R&D Efficiency

Managing Complexity !

Breaking down a print system

Breaking down a print system

PRISMAsync

Controller features

- UI
- Job management
- Workflows, planning
- Fleet management
- Color management
- Media management

Breaking down a print system

Engine features

- Brings engine alive with behavior (control, measurement)
- Systems level multidisciplinary aspects:
 - Productivity
 - Data trends/analysis
 - Variability
 - Error handling

Modeling is no stranger to us

Pa A_AbstractINPDeviceStubTestContainer Connected through SAP/SPP s_DeviceStubs s_TestCaseCtrl : P_testCaseCtr s_TestCaseCtrl~ : P_testCaseCtrl [20] a_InpServiceStub : A_InpServiceStub [0..1] 0..1 a_NbDeviceStub: A_NbDeviceStub[0..1] s_Frame : Frame E_Timer : Timing Both use the D_INPIds database to get information for the SAMPLEDEVICE Connected through SAP/SPP s_DeviceStubControl s_TestCaseCtrl : P_testCaseCtrl s_TestCaseCtrl : P_testCaseCtrl 0.1 a_RemoteControlStub : A_RemoteControlStub 0.1 a_INPDeviceStub_ExceptionCatcher A_INPDeviceStub_ExceptionCatcher s_DeviceStubControl~ : P_DeviceStubControl

p_InjectTestCases : P_InjectTestCases

Modeling is no stranger to us

^{le}> logAlDebugLevels ^{le}> logOnlyDefaultDebugLevels ^{le}> rtUnbound_TestcaseCtrl ^{le}> sync ⊕

Technologies

Controller (cut-sheet):

- Single configurable code base
 - C, C++, C#, Java, TypeScript, XML, ...
 - PowerShell, Python, Lua, ... (for build & test)
- Co-developed at five different R&D sites
- Supports ±8 product families
- Supports Océ and Canon engines

Engines:

- Code bases per product family, with a shared reuse architecture and infrastructure
 - C, C++, VHDL, Matlab, RSA-RTE
 - Python and Lua for testing & data science
- Multiple sites, dedicated development of specific engine types

Both:

- Mature development/build/test environment:
 - Mature engineering tools and version control (VS, RSA-RTE, TFS)
 - Automatic deployment of development and test environment
 - Nightly build and test (unit tests, module tests, system test framework)
- MDE for complex control using state machines
 - Synthesis custom MPS-based tooling (components, generates C++ & Boost), RSA-RTE
 - Analysis OIL (components & interfaces, proof-of-concept tooling)

Océ - A Canon Company

Some MBD examples

MBD landscape of opportunities

Example: In control over Dynamics

Product Development Vision

80% -- Risk reduction & architecture verification

Model Based Design

Maintainable & reusable modeling

The Modeling Manifesto

We are uncovering better ways of developing products by doing it and helping others do it. Through this work **we have come to value**:

Virtual prototypes over physical models Simple, easy-to-change models over complex detailed static ones Demonstrable models over submarine ones Modeling in teams over lone wolf modeling Connected models over stand-alone models Self-documented models over classic documentation

That is, while there is value in the items on the **right**, we value the items on the **left** more.

Why use virtual printer prototypes?

Océ VarioPrint 110

- Printer availability; costs
- Improved understanding
- Shorter development time
- 24/7 testing
- Environmental benefits

How it works: introduction to SIL

Case: VarioPrint i300 3D Visualization

Plant modelling & SIL

Modular Océ Reusable PlatForm

Electronics/Software Interface

HappyFlow sheet timing simulation

Timing combined with 3D-CAD

Rendered including print job

Make it "business as usual"

Introduce organization and process...

MBD supports the transition to:

Model Based Development?

Dare to dream !

Questions?

A CANON COMPANY