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Embedded system developers face 

many and sometimes conflicting 

challenges. To increase efficiency and 

drive down hardware cost, they must 

aim for ever higher levels of system 

integration. But to keep applications 

manageable and scaleable, they need 

solutions that are as general and 

modular as possible. At the same time, 

embedded system complexity rises, 

quality standards go up and 

development time needs to decrease.

With such opposing forces, how  

can the development of embedded 

systems still remain successful, 

maintainable and reliable?

This white paper gives an overview of 

how embedded system engineers  

can cope with these issues, now and in 

the future. It does so by showing  

what successful strategies we have 

developed in the past few years. 

Taking the development of the fastest 

duplex cut sheet printer in the world  

as a case example, we outline four 

elements of successful embedded 

software design:

•   Model driven development as the 

leading method for designing  

and building real-time systems.

•  A standard real-time embedded  

 software architecture.

•  Reuse of software as a  

 “company philosophy”.

•  Systematic approach to  

 quality control.

The lessons learned from our 

experiences with embedded design 

are so general that they can be  

applied to a wide range of real-time 

system designs.



Océ White Paper | July 2007 The future of real time embedded systems | 2

Introduction 3

Challenges. High-tech demands for  
embedded systems 4

Historical overview. The race for complexity 5

Case example: Building the fastest
duplex printers in the world 7

 Outlook: meeting future demands for  
the printing industry 17

Profile 18

Acknowledgements, References 19

Content



Océ White Paper | July 2007 The future of real time embedded systems | 3

Modern high-volume cut sheet printers are advanced 

process controlling systems. Designing, building, 

and testing such systems is no simple task; they 

must monitor and control an increasing amount of 

mechanical, electronic, and chemical processes within 

the printing equipment. Ever more time-critical 

production schemes, rising customer expectations, 

cost reduction, and stricter environmental and safety 

regulations push technology to the physical limits of 

what printing technologies are capable of.

This white paper presents strategies for designing, 

building and testing embedded systems in the industrial 

printing environment. It looks at what developers 

need in order to deal with the vastly rising complexity 

of printing equipment. Embedded system developers 

need to cope with different hardware components 

with different software running on each component, 

changing hardware platforms and tool sets used for 

generating code, rising quality standards and expanding 

functionality. At the same time, new environmental and 

safety regulations must be met.

Some of the problems of designing embedded systems 

are presented here, as well as a case study in which 

the design of the fastest duplex printer in the world is 

described. We will present the most relevant lessons 

learned from our new systematic design approach. Since 

our work started about a decade ago, our experiences 

may serve as a basis for an outlook to future trends and 

developments.

Introduction



Océ White Paper | July 2007 The future of real time embedded systems | 4

Any real-time embedded system must address the 

following issues:

•  Event handling: real-world systems involve complex 

sequences of events – internal events caused by 

components of the system or external events caused by 

an operator or the environment.

•  Timing behavior: many events require a real-time 

response from the embedded system. There are two 

different types of real-time requirements: hard real-

time requirements, which cause system failure if 

not met, and soft real-time requirements, which are 

performance requirements that mostly cause a loss of 

productivity if not met.

•  Concurrency: events may occur simultaneously. Since 

embedded systems can do only a finite number of 

things at a time, they must implement a scheduling 

policy that controls when tasks execute.

•  Synchronization and communication: concurrent 

systems must agree on the use of hardware resources 

such as memory, processing capacity, bandwidth  

or power.

•  Exception handling: in the physical world mechanical 

systems may wear down. Users may push machines 

beyond their physical limits or make mistakes. So, 

embedded systems need to be extremely fault tolerant.

•  Robustness: embedded systems must monitor and 

control a wide variety of processes for days or even 

years on end in local environments that may be 

extremely cold, hot, dusty, or humid. 

Actual systems have to exhibit numerous other 

properties and obey constraints such as size, 

extensibility, maintainability, power consumption, 

weight, user-friendliness, or meeting environmental 

regulations.

From such a list of characteristics one can deduct that 

one has to live with compromises. There is not one 

“silver bullet” solution for embedded systems design. 

Strategies have to be multi- and cross-disciplinary and 

should reflect that technology is just one part of the 

solution. Innovative management and organizational 

structures are equally important.

The scope of the conflicting challenges faced in 

embedded system design will be illustrated by a short 

historical overview of rising system complexity.

Challenges

High-tech demands for embedded systems
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One major challenge of embedded systems is that 

hardware performance and the quality of software tools 

are out of sync. Whereas the performance of micro 

controllers doubled about every three years in the past 

two decades, the complexity of designing, programming, 

and testing embedded systems with controller boards  

has grown at a much faster rate.

The net result of this development is that embedded 

developers have to face a “tools gap” – the overall 

complexity of a system grows at a faster rate than the 

capacity of available tools to predict or analyze  the 

real-time behavior of such systems. Even though 

common engineering practices have evolved, from “no 

method” (using assembly language) as a programming 

environment on 8 bit micro controllers) via “structured 

method” (using C) to “object orientation” (commonly 

using C++), designing real-time embedded software  

in large teams is an extremely difficult task.1

 

Today’s developers have to deal with problems that 

require multitasking, object-oriented programming and, 

real-time execution all at once. Within the printing 

domain, embedded software engineers have to cope with 

the following additional factors (see also figure 1):

•  Cheaper hardware components need to be kept within 

fault tolerances using intelligent controlling software.

•  Software needs to compensate for fewer hardware com-

ponents that deliver more and better functionality.

•  Rising equipment complexity creates more interaction 

with sensors and actuators.

•  Increasing printing speed.

•  Higher levels of embedded system integration.

•  Better user interfaces, and in general, more complex 

interfacing with an increasing number of standards 

and protocols.

•  Increased need for modularity.

•  Decreasing time to market.

•  Lower total cost of ownership.

All this has presented embedded systems developers 

with immense challenges. At the end of the 1990s, 

surveys showed that future projects would fail to meet 

requirements or even fail completely, because of the 

overall poor state of programming tools in complex real-

time environments.2

Historical overview

The race for complexity
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While  engineering practices  evolved  from  

“no method” to “UML”, on-board memory 

capacity increased by a factor 1000 in the past 

two decades. Overall system complexity has 

risen even faster.  

Varioprint 6250

•  World fastest duplex printer  

(250 images/minute).

•  100% accurate registration.

•  Automatic and complete job recovery. 

•  Printing all paper formats between  

178 x 203 and 320 x 488 mm.

•  Productive mixed media printing  

from 12 different trays.

Figure 1: Embedded systems complexity in printing equipment

Historical overview

The race for complexity

Product Year Method OS Memory
(ROM)

Processor Language Images/
minute

Print 
resolution

1900 1979 No No 64 K 8085 Assembler 45 Analog

2500 1984 Yourdon Own 394 K
8088 & 

68000
C/Pascal 100 Analog

3165 1995
Ward & 

Mellor
VxWorks 1 M

8088 & 

68000
C 62 600 DPI

Varioprint 

2090
2002

UML / Rose 

RT
VxWorks 5*4 M

5*AMD SC 

520
C++ 85 600 DPI

Varioprint 

6250
2006

UML / Rose 

RT

VxWorks & 

Own

1*64 M & 

16*256 K

Celeron &

16*Infineon

XC167

C++ & C 250 1200 DPI
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In 2001, Océ Technologies set out designing the 

fastest cut sheet duplex printer in the world. The initial 

specifications of the “Varioprint 6250” were a real 

challenge to embedded systems. Printing speed should 

be a mind-blowing 250 images per minute – 80% faster 

than anything ever built. Printing should be duplex 

in near-offset quality. At the time, it was unknown 

whether the physical constraints of the printing process 

and the required synchronization of paper flow and 

high-bandwidth digital image streams would allow for 

printing both sides of a sheet of paper at the same time 

at the required printing speed. The machine should be 

capable of handling any paper format and size, including 

rare oversizes, without slowing down. Up to twelve paper 

trays – each tray possibly loaded with pre-printed or  

prepunched media – should be addressed independently.

Manual reloading of the paper trays should not interrupt 

the printing process. The system should be capable of 

detecting paper size and orientation fully automatically. 

A micro-positioning system correctly adjusts each sheet‘s 

time of arrival, rotation and aligning, all adjusting done 

in less then half a second.

One of the most challenging tasks was designing a 

system that would keep track of dozens of individual 

sheets of paper at the same time, while they were routed 

through the paper path. The paper path could be of 

variable length, due to different system configurations, 

and had a maximum length of more than 15 meters. 

Planning, routing, positioning, synchronizing and 

printing 6 million sheets of paper per month through 

this path, while handling more than a dozen types 

of sheets simultaneously in the path and coping with 

possible media jams safely and correctly, was at the limit 

of what embedded systems would be capable of.

It would have been impossible to use one or even a few 

central processing units to control this machine. Such 

a centralized system would simply fail to meet critical 

timing demands.

Also, due to physical distances between the embedded 

hardware and the sensors and actuators mounted 

throughout the machine, large amounts of cabling 

would have been required. We decided to use the most 

advanced hardware architectures and software tools 

available. In the new, distributed architecture, we 

introduced intelligent subnodes.3

The heart of an intelligent subnode is formed by a 

universal embedded control platform. The platform 

consists of a high performance 16-bit CPU, running at 

40 MHz. To guarantee hard real-time responsiveness, 

the nodes run a fixed time scheduler, with a round 

robin time of 2 msec. Time slots are 100 µsec with the 

maximum delay between signals caused by interrupt 

handling of just 30 µsec.

Case example

Building the fastest duplex printer in the world
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A total of 17 such control cards are placed throughout 

the hardware, each on top of a customized I/O board. 

Some of the nodes meet hard real-time requirements, 

others are used for soft real-time actions. The subnodes 

are connected through two Controller Area Network 

(CAN) buses to a main control unit, running a fast, 

2Ghz Intel Pentium Celeron. The CAN buses have been 

specifically designed to be robust in electromagnetically 

noisy environments such as automobiles. Since the 

physical distances in a car are comparable to those in 

our printers, the CAN bus is ideally suited for use in 

printing equipment. The two CAN buses use different 

dedicated protocols: the Inter Node Protocol (INP) 

and the Océ Finisher Interface (OFI) protocol. A USB 

2.0 connection is used for transmitting compressed 

bitmaps (600x1200 dpi) from the controller to the image 

datapath subnode. Another optional USB network 

connects all subnodes. This enables direct high-speed 

logging and debugging raw sensor data in R&D.

All actions must be synchronized over the non-real-time 

CAN bus. In order to accomplish this, actions must be 

timestamped and then sent to subnodes in advance. It 

also implies that all subnodes and mainnode have the 

same notion of time (see figure 2).

Thus, interconnection and interoperation were the 

keywords in this new machine. For the embedded 

system developer team, this translated into convoluted 

architectures and critical timing and integration issues.

We realized that in order to avoid project delays,  

missed deadlines, and exploding costs, we would have  

to do more than just design software and hardware.  

We needed a fundamental look at our existing software 

tools (Step 1), system architectures (Step 2), and design 

strategies (Step 3). It would also be necessary to make 

testing and quality control procedures more systematic 

and efficient (Step 4).

Case example

Building the fastest duplex printer in the world
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USB 2.0 connection
Used for high speed logging of raw sensor data. Also used
for the transport of bitmap data from controller to subnode

2 CAN databuses (INP, OFI):
- 250 kbit /sec bi-directional datatransfer
- Facilitates communication between mainnode and subnodes

Sensor /actuator cable
Used for high speed logging of raw sensor data

Ethernet connection
For logging and connection with controller

Interaction point
Sensor-triggered exchange moment at wich sheets
or images are passed to the next transport function.

Subnode with synchronised clock
Maximum time deviation: 10 �sec

Mainnode

Image Processing
x

Single “datapath” subnode with a Xilinx Spartan FPGA

Paper sheet micropositioning
x

Fault tolerance: 0,1 mm

Image circuitry
x

4 individual Hall-sensors, 6 motors
and the digital image generating
circuitry are synchronised, so that
front- and back image position
properly. Maximum positioning
fault tolerance: 0,1 mm within
250 ms

Mainnode
x

Intel Pentium Celeron, 2 Ghz clock 32 bits 64 MB
Flash, 256 MB RAM, Operating system: VxWorks
10/100 MB Ethernet, TCP/IP, SMB, 2 ports
CAN bus (pci)

Subnode processor card
x

Infineon XC167 at 40 MHZ,
8 kByte SRAM,
256 kByte FLASH
(image shows front- and backview)
On-Boards Memory:
128 kByte SRAM

USB 2.0 connection
Used for high speed logging of raw sensor data. Also used
for the transport of bitmap data from controller to subnode

2 CAN databuses (INP, OFI):
- 250 kbit /sec bi-directional datatransfer
- Facilitates communication between mainnode and subnodes

Sensor /actuator cable
Used for high speed logging of raw sensor data

Ethernet connection
For logging and connection with controller

Interaction point
Sensor-triggered exchange moment at wich sheets
or images are passed to the next transport function.

Subnode with synchronised clock
Maximum time deviation: 10 �sec

Mainnode

Image Processing
x

Single “datapath” subnode with a Xilinx Spartan FPGA

Paper sheet micropositioning
x

Fault tolerance: 0,1 mm

Image circuitry
x

4 individual Hall-sensors, 6 motors
and the digital image generating
circuitry are synchronised, so that
front- and back image position
properly. Maximum positioning
fault tolerance: 0,1 mm within
250 ms

Mainnode
x

Intel Pentium Celeron, 2 Ghz clock 32 bits 64 MB
Flash, 256 MB RAM, Operating system: VxWorks
10/100 MB Ethernet, TCP/IP, SMB, 2 ports
CAN bus (pci)

Subnode processor card
x

Infineon XC167 at 40 MHZ,
8 kByte SRAM,
256 kByte FLASH
(image shows front- and backview)
On-Boards Memory:
128 kByte SRAM

Figure 2: An overview of embedded systems within the Varioprint 6250

Case example

Building the fastest duplex printer in the world
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Step 1: Existing software tools

Facing the increasing difficulties with existing 

software tools, Océ decided in 1998 to experiment 

with Model Driven Development (MDD). This was 

a remarkable step, since MDD was known primarily 

in the telecommunications domain. In other real-time 

software-design domains it was hardly ever used in  

the actual process of coding software. At the time, 

automatically generated code from models was  

regarded as complex and resource-hungry. Most real-

time developers held (and some even do so today)  

that the syntax of MDD tools would be too general 

and imprecise. So how could MDD work for real-time 

applications?

From our extensive experiments and real-world 

experiences within running projects we have learned that 

modern tools for MDD not only work for complex 

systems using C++ under a real-time, multi-threaded

 

operating system, but that they also work surprisingly 

well with severely constrained systems that utilize an 

execution framework instead of a multi-threaded OS.4,5

We used an industry-leading MDD development 

environment, which is based upon the ROOM 

Language (ROOM/UML, see inset). The tool is fully 

model driven and object oriented. It generates C++  

or C, which runs on numerous operating systems.  

Using this tool, we were able to decompose complex 

systems into subsystems (see figure 3). This allowed 

us to model a vast number of concurrent finite state 

machines. This solution generates very efficient code on 

targets varying from 8-bit micro controllers to 32-bit 

general purpose processors.

Case example

Building the fastest duplex printer in the world

Unified Modeling Language 

The Unified Modeling Language (UML) was developed in 1997 6. UML is a visual language and has both syntax and semantics. 
Its graphical elements of objects are used as representations of a concept, but also tell you something about their specific content. 
It has an extensive vocabulary for capturing behavior and process flow. And it can even be used to make a blueprint of software. 
These blueprints, much like architectural drawings, use icons to represent structure (classes and objects, attributes, operations, 
and relationships), function (the functionality of the system from the user‘s point of view) and behavior (sequences, activities, and 
states).

UML was developed from earlier modeling languages, such as the Real-time Object Oriented Modeling language (ROOM). 
ROOM was introduced by Bran Selic, Garth Gullekso and Paul T. Ward in 1994. The essential concepts of ROOM have been 
incorporated into UML 2.0. Among these are composite structures, ports and message passing. It is these concepts that make UML 
suitable for the construction, design and implementation of real-time systems.

The first tool which took advantage of ROOM was ObjecTime. This tool has evolved into “Rational Rose Real-Time” (RRT).
RRT is considered to be a leading tool for UML generated code in real-time embedded systems (http://www-306.ibm.com/
software/rational/). Interestingly, RRT is also used by NASA for the James Webb Space Telescope – a large, infrared-optimized 
space telescope, scheduled for launch in 2013 (see: www.jwst.nasa.gov).



Océ White Paper | July 2007 The future of real time embedded systems | 11

Equipped with the MDD techniques, we were able to 

design, build and debug the hugely complex system of 

the “Varioprint 6250” (see figure 2). Design guidelines 

were used to instruct the engineers how to create 

simple and efficient models, even when using a lot 

of concurrency. Such models are based on multiple-

processor, multiple-threaded hardware and software 

architectures. Because of the run-to-completion 

semantics of active objects, the usual difficulties, in 

which the output of the process is unexpectedly and 

critically dependent on the sequence of other events 

(“race conditions”) were virtually absent. The common 

and very difficult error in real-time design, in which 

competing actions are waiting for each other to finish 

(“deadlocks”), was no problem any more to our team.

With MDD, engineers were able to concentrate on 

functionality and quality. Moreover, all of our engineers 

could understand and talk to each other in the same 

language. And since explaining a diagram is far more 

simple than explaining a piece of code, MDD stimulated 

dialogue within the organization as a whole.

Overall, the decision in favor of MDD greatly enhanced 

the application development cycle, while improving 

product maintenance and quality control.

H*

H*

H*

unitStatusUpdate

Idle

startTestRequest

startTestReplyError

SIWaitingFor StopReply

startTestReplyOk
stopTestReq

unexpected
EDMMessages

TestInProgress

testEnded

testStopReq

stopTestReply

initialize

unexpected
ClientMessages

SIWaitingFor Reply

testEnded

Figure 3: State diagram

Part of a hierarchical finite state machine.  

The state transitions inside an active object 

contain hand-written code. Concurrency  

is guaranteed since the system ensures  

that state transitions execute atomically (run  

to completion). A code generator generates a 

complete source file for the finite state machine, 

including the hand-written code. Interestingly, 

the generated code is never touched by the 

engineers due to the abstraction that the model 

offers. One exception to this is when code  

is debugged at source level in order to look  

at what happens inside state transitions. But  

it is also possible to debug finite state  

machines visually.

Case example

Building the fastest duplex printer in the world
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Step 2: Standardised system architectures

Much of the quality of a real-time system is defined 

by its system architecture. Such an architecture gives a 

picture of the hardware and software components in use, 

their relationships to each other and to the environment, 

and the principles governing the design and evolution  

of the system.

So, before designing the “Varioprint 6250”, the Océ-

developer team introduced the “Embedded Software 

Reference Architecture” (ESRA). ESRA defines the 

generic context for the MDD software tools and 

hardware and software components in use. It does so 

by defining universal mechanisms and procedures for 

handling the basic functionality of printing engines. 

This means that ESRA defines status behavior, 

controlling paper sheets and images, and error handling. 

For distributed deployment, ESRA defines persistent 

storage mechanisms and communication protocols. 

ESRA also offers designers standardized methods for 

developing and analyzing systems based on its  

general architecture.

Designing, implementing, and maintaining a reference 

architecture over a long period of time has proven to be 

a delicate matter. The key issue is that the architecture 

itself is not static: projects with new functionality come 

in and old projects are discontinued. This makes ESRA 

a managerial as well as a technological challenge.

From the technological point of view, one of the  

main advantages of ESRA is that software deployment  

is no longer tied to specific hardware deployments.  

This means that ESRA standard architecture 

components – which have been designed for large, 

industrial printers – may also fit into smaller  

office printers.

As for the managerial aspects, the success of a standard 

system architecture is critically dependent on a flexible, 

non-hierarchical organizational structure. Essential 

elements are:

•  Collective “ownership”: the reference architecture is   

shared by all architects in “using” projects.

•  No obligations: every architect has the freedom of 

using solutions not covered in ESRA – provided that 

sound arguments support such a decision.

•  Team dialogue: architects and engineers are  

regularly talking and working together and are all 

trained in how to use the architecture (regular  

three-day architecture courses teach the fundamentals 

of ESRA).

•  Interdisciplinary dialogue: Having a reference 

architecture as a starting point enables the embedded 

architect in an early phase to have impact on both 

hardware and system architecture.

Overall, ESRA has established itself as a robust design 

environment. Its main advantages are:

•  New projects can be “jump-started” with total time 

needed for making executable software for a working 

product prototype reduced to just a few months.

•  With ESRA taking care of much of the standard 

functionality‘s of a new project, engineers can focus 

on innovation.

•  Research and development creates a progressive set of 

knowledge, technologies, and experts.

•  ESRA is a technology catalyst, providing dynamic 

feedback and control to both software reuse and 

model driven development (see figure 4).

ESRA‘s high level of system integration and modularity 

allows for implementation on diverse printer models. 

One of the most fascinating examples of hardware 

independent deployment is that we are currently able 

to use the same architecture on completely different 

platforms: it runs on a high end distributed platform 

with more than 18 subnodes, as well as on a very limited 

platform with only a single processor.

Case example

Building the fastest duplex printer in the world
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Step 3: Reusing software components
 
With the right software tools and standard system 

architecture available, the Océ developer team 

encountered another major issue: software reuse. 

Reusing software is essential for efficiency and  

long-term product development. It means using 

standardized software modules for meeting current  

and future technological demands.

So, well before the “Varioprint 6250” was designed,  

a small group of software engineers started delivering 

components with standard behavior. The components 

were described in UML models and ESRA data 

structures. From the start, these models were tested  

and used in multiple real-world projects. The projects 

were all in different phases of the life cycle, having 

different functional requirements and technological 

innovations. Today, the number of software components 

has grown to a set with which the complete standard 

control software of any kind of printing equipment can 

be built. (see figure 5,6)

This is a remarkable achievement, since software reuse 

is a complex, and a highly knowledge-intensive subject.7 

Software reuse must focus not only on the problems 

related to developing reusable components, but also faces 

many challenges related to keeping previously defined 

reusable components up-to-date, slim, manageable  

and useful. Finding the right balance between long-

term interests – universal applicable models – short-

term needs – suitability for particular projects, time to 

market, ad hoc flexibility – may fail easily.
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technology catalyst

Note the dynamic interaction 

between projects, the reference 

architecture, software reuse, 

and MDD.

Case example

Building the fastest duplex printer in the world
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The most prominent causes of failure in reuse  

projects are:

•  Inferior quality. Risk: buggy reuse components that 

do not meet the customers quality expectations

•  “Top-down” approach. Risk: reusable components 

become too large and generic. They are poorly 

optimized for running projects. Priorities for bug 

fixing and new functionality are getting out of sync 

with the needs of engineering teams.

•  Insufficient organizational support. Risk: the 

immanent conflicting forces between short term 

project needs and long term reuse portfolio strategies 

may endanger the cooperation between engineers  

and line management. Ultimately, engineers may  

not want to participate in the “reuse-project” at all.

•  Dogmatism. Risk: throttling innovation. When reuse 

is applied dogmatically, engineers lack the freedom to 

look for new solutions.
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Case example

Building the fastest duplex printer in the world

Not all software is suitable for reuse.  

Reuse can be much more effective in such  

areas as “services” and “controller interface” 

than in “functions” or “devices” (product-

specific coding).

•  Controller interface: components for 

communication with the controller PC.

•  Managers: standard ESRA managers,  

e.g. status manager, engine information 

manager.

•  Services: diverse service functions.

•  Tools: development tools, e.g. for data logging

•  Functions: machine-specific functionality,  

e.g. paper handling. 

•  Devices: drivers for sensors and actuators.

Figure 5: Estimated and forecast net effect of reuse efforts within Océ from 2000-2010.
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We prevent the first two causes of failure, as described 

on the previous page, by designing reuse software 

components not as abstract concepts, but as building 

blocks which can be directly used in currently running 

projects. We also found social software techniques 

helpful, such as giving everyone involved access to 

an intranet website and a wiki. Both are used to 

list all available reuse components, documentation, 

release notes, and bug reports. The last two causes are 

prevented by having full management commitment 

and focus for innovation. This is something that starts 

with the architecture and ends with evolved software 

components. It is about having the right staffing and 

competence available at every stage of the process.

Moreover, a “change control board” is in charge of 

new functionality and bug fixing. The board also sets 

maintenance priorities and discusses new developments 

and releases. Engineers from running projects participate 

in the board. Overall, an informal, flat organizational 

structure has proven essential for software reuse.

Although reuse does not need MDD, we found that it is 

greatly aided by the object orientation approach of 

MDD. Interfaces are narrow and uniform. Inheritance 

allows for adaptable behavior. Overall, reuse significantly 

shortened our time-to-market, increased efficiency, and 

improved the overall quality of the product.

Figure 6: Timeline

One of the challenges of software reuse is that projects are in different phases of their life cycle.  

This makes finding the right balance between short-term goals (tight integration) and long-term 

goals (modularity) a delicate matter. 

Case example

Building the fastest duplex printer in the world
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Step 4: quality control

Debugging and testing the new “Varioprint 6250” 

turned out to be a real challenge to our developers. For it 

is still not feasible to prove from theory that a modeled 

deterministic finite state machine will work as specified 

in all possible states.8 This is because there are no  

mature simulation tools available that would allow 

formal analyses of problems such as deadlocks or critical 

timings for every possible execution path of the system. 

Testing and prototyping thus has to run through various 

scopes and states of complexity:

•  Simulation: parts of the new design are simulated on 

a desktop computer. A complete engine node can be 

tested on a Windows PC, since MDD-models contain 

hardly any platform dependent code. Porting to the 

real target platform is easy.

•  Table-top testing: a fragment of the target hardware 

is built with a few sensors and actuators. This allows 

for early-phase testing of critical real-time control 

loops. Peer reviews check the validity of the design. 

Automatic regression tests check whether program 

changes had any unintended effects on overall 

software functionality.

•  Embedded testing: a functional representation of the 

real machine is built, with all required sensors and 

actuators available. The path of the paper through 

the machine is simulated. This enables testing of the 

controlling architecture, drivers, interfaces and inter-

processor communication. This approach results  

in a high level of software quality before integration 

with the actual printer, which in turn results in  

very short integration lead times.

An important consideration is the difficulty of 

debugging software once it has been downloaded to  

the target hardware. Tools such as debuggers and  

in-circuit emulators are only of use when a problem 

can be reproduced. And this is not always the case. 

Reproducing errors may also be too time-consuming 

because of the non-deterministic character of the 

embedded software.

The Océ-team developed a method in which nearly all 

bugs can be traced without the need for reproducing 

failure scenarios. This has been achieved by:

•  Data logging. All internal events, states and other 

relevant information for every state of every processor 

and subnode is logged, resulting in 12.5 megabytes of 

logging per minute. Subnodes are equipped with extra 

logging facilities, including a high-bandwidth USB 

2.0 interface. Even in production, extensive logging is 

being carried out.

•  Data probing. The transmission on the CAN 

databuses can be probed directly and in real-time. 

The high-speed datatransmission between engine and 

controller, via a 100 Mbit ethernet connection, can 

also be probed.

•  Data injection. The same channels available for 

probing can be used for real-time injection of  

raw data.

We developed sophisticated “stubbing” methods with 

which various parts of the physical hardware can be 

replaced by a simulated part on different levels of the 

system hierarchy. “Stubbed” components can vary from 

individual sensors and actuators to complete subnodes. 

With stubbing, we are able to simulate all real-time 

sensor data that a physical sheet of paper produces when 

it moves through the paper path of the target machine. 

This enables us to test large portions of the paper 

handling machinery, without wasting even one single 

physical sheet of paper.

Case example

Building the fastest duplex printer in the world
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Today, Océ‘s state-of-the-art real-time embedded system 

development environment performs extremely well.  

And it still carries many promises for the future. How 

do we translate those promises into real innovations?

Several times a year, we let a group of architects and 

engineers identify future technologies that the company 

may require. A “technology road map” is then created 

and if necessary, action is taken.

On a broad level, our current technology roadmap shows 

three future developments within embedded systems.

First, new software tools will solve numerous technical 

design and debugging issues. A general trend is the 

integration of stand-alone design- and debugging tools 

into one intelligent “knowledge system”. Interestingly, 

powerful open source tools have entered the embedded 

domain in recent years. Open source solutions  

such as “Eclipse” offer new perspectives on building 

and maintaining high-quality extensible architectures, 

runtimes, and application frameworks (see www. 

eclipse.org).

Second, further strategic application of MDD, software 

reuse, and standard system architecture design will 

bring the dream of embedded development – to use 

context-dependent code as little as possible – further 

within reach. This will mark a distinct shift in the 

role of developers – from designers of customized code 

to integrators of standard modules. One interesting 

instance of such a development is the future role  

of testing. With an ideal set of reusable software and 

hardware modules available, developers would have 

to spend less time testing. Instead, they would be able 

to concentrate on innovations and new functionality. 

A cross-disciplinary approach may be able to generate 

testing, monitoring and design tools for other disciplines 

in the printing industry, such as mechanics or chemistry.

Third, the role of simulations will increase substantially. 

Future software tools will enable embedded system 

developers to simulate a wide range of critical hardware 

characteristics of the printing equipment. Such 

simulation tools will not just enable detailed insight 

in the printer‘s paper path, but will also be capable of 

predicting power consumption, noise levels and other 

environmental characteristics. New, cross-domain 

simulation tools might be able to predict things such 

as mechanical wear and tear of components over time. 

With such tools, it would be possible to analyse all 

possible hardware failures in the equipment life-cycle  

in great detail even well before the actual machine has 

been built.

In a more distant future, it may be possible that 

three-dimensional simulation tools will revolutionize 

maintenance and the development process of printers.

However, the real challenge of embedded system 

engineering is not just to find ever more state-of-the art 

technologies, but to explore new strategies for dealing 

with the relentless rise in system complexity. At Océ, we 

take pride being at the forefront of this endeavor.

Outlook

Meeting future demands of the printing industry
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Océ is one of the world’s leading suppliers of professional 

printing and document management systems. Océ 

employs 23.000 people world-wide. About 3.500 work  

in Venlo, where headquarters, manufacturing, logistics 

and R&D are located.

Océ was founded in 1877 in Venlo. The company 

entered the copying business in 1920. In 1986, the first 

fully self-developed printers were introduced. In 1994 

the first digital copier/printers entered the market.  

With 90 percent of Océ’s sales relating to digital 

products, Océ is now ranked among the world’s top  

100 IT businesses.

Total R&D manpower in Venlo is 1.000, making Océ 

one of the top ten R&D companies in the Netherlands .9 

About 8 percent of the total revenue of Océ is spent on 

R&D. Most of the research is multi-disciplinary. Océ’s 

total R&D budget expanded from about 60 million 

Euro in 1986 to 220 million Euro in 2006.

Profile
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