
Océ White Paper | July 2007 The future of real time embedded systems | 1

White Paper

The future of real time embedded systems

in high volume printing

C. Delnooz, L.A.J. Dohmen, J. van de Hee, R.P.M. Jacobs, D.P.C. Janssen, A.B. van der Wal

Océ R&D, E-Mail: chris.delnooz@oce.com, lou.dohmen@oce.com, johan.vandehee@oce.com,

ruud.jacobs@oce.com, ton.janssen@oce.com, alex.vanderwal@oce.com.

Embedded system developers face

many and sometimes conflicting

challenges. To increase efficiency and

drive down hardware cost, they must

aim for ever higher levels of system

integration. But to keep applications

manageable and scaleable, they need

solutions that are as general and

modular as possible. At the same time,

embedded system complexity rises,

quality standards go up and

development time needs to decrease.

With such opposing forces, how

can the development of embedded

systems still remain successful,

maintainable and reliable?

This white paper gives an overview of

how embedded system engineers

can cope with these issues, now and in

the future. It does so by showing

what successful strategies we have

developed in the past few years.

Taking the development of the fastest

duplex cut sheet printer in the world

as a case example, we outline four

elements of successful embedded

software design:

• Model driven development as the

leading method for designing

and building real-time systems.

• A standard real-time embedded

 software architecture.

• Reuse of software as a

 “company philosophy”.

• Systematic approach to

 quality control.

The lessons learned from our

experiences with embedded design

are so general that they can be

applied to a wide range of real-time

system designs.

Océ White Paper | July 2007 The future of real time embedded systems | 2

Introduction 3

Challenges. High-tech demands for
embedded systems 4

Historical overview. The race for complexity 5

Case example: Building the fastest
duplex printers in the world 7

 Outlook: meeting future demands for
the printing industry 17

Profile 18

Acknowledgements, References 19

Content

Océ White Paper | July 2007 The future of real time embedded systems | 3

Modern high-volume cut sheet printers are advanced

process controlling systems. Designing, building,

and testing such systems is no simple task; they

must monitor and control an increasing amount of

mechanical, electronic, and chemical processes within

the printing equipment. Ever more time-critical

production schemes, rising customer expectations,

cost reduction, and stricter environmental and safety

regulations push technology to the physical limits of

what printing technologies are capable of.

This white paper presents strategies for designing,

building and testing embedded systems in the industrial

printing environment. It looks at what developers

need in order to deal with the vastly rising complexity

of printing equipment. Embedded system developers

need to cope with different hardware components

with different software running on each component,

changing hardware platforms and tool sets used for

generating code, rising quality standards and expanding

functionality. At the same time, new environmental and

safety regulations must be met.

Some of the problems of designing embedded systems

are presented here, as well as a case study in which

the design of the fastest duplex printer in the world is

described. We will present the most relevant lessons

learned from our new systematic design approach. Since

our work started about a decade ago, our experiences

may serve as a basis for an outlook to future trends and

developments.

Introduction

Océ White Paper | July 2007 The future of real time embedded systems | 4

Any real-time embedded system must address the

following issues:

• Event handling: real-world systems involve complex

sequences of events – internal events caused by

components of the system or external events caused by

an operator or the environment.

• Timing behavior: many events require a real-time

response from the embedded system. There are two

different types of real-time requirements: hard real-

time requirements, which cause system failure if

not met, and soft real-time requirements, which are

performance requirements that mostly cause a loss of

productivity if not met.

• Concurrency: events may occur simultaneously. Since

embedded systems can do only a finite number of

things at a time, they must implement a scheduling

policy that controls when tasks execute.

• Synchronization and communication: concurrent

systems must agree on the use of hardware resources

such as memory, processing capacity, bandwidth

or power.

• Exception handling: in the physical world mechanical

systems may wear down. Users may push machines

beyond their physical limits or make mistakes. So,

embedded systems need to be extremely fault tolerant.

• Robustness: embedded systems must monitor and

control a wide variety of processes for days or even

years on end in local environments that may be

extremely cold, hot, dusty, or humid.

Actual systems have to exhibit numerous other

properties and obey constraints such as size,

extensibility, maintainability, power consumption,

weight, user-friendliness, or meeting environmental

regulations.

From such a list of characteristics one can deduct that

one has to live with compromises. There is not one

“silver bullet” solution for embedded systems design.

Strategies have to be multi- and cross-disciplinary and

should reflect that technology is just one part of the

solution. Innovative management and organizational

structures are equally important.

The scope of the conflicting challenges faced in

embedded system design will be illustrated by a short

historical overview of rising system complexity.

Challenges

High-tech demands for embedded systems

Océ White Paper | July 2007 The future of real time embedded systems | 5

One major challenge of embedded systems is that

hardware performance and the quality of software tools

are out of sync. Whereas the performance of micro

controllers doubled about every three years in the past

two decades, the complexity of designing, programming,

and testing embedded systems with controller boards

has grown at a much faster rate.

The net result of this development is that embedded

developers have to face a “tools gap” – the overall

complexity of a system grows at a faster rate than the

capacity of available tools to predict or analyze the

real-time behavior of such systems. Even though

common engineering practices have evolved, from “no

method” (using assembly language) as a programming

environment on 8 bit micro controllers) via “structured

method” (using C) to “object orientation” (commonly

using C++), designing real-time embedded software

in large teams is an extremely difficult task.1

Today’s developers have to deal with problems that

require multitasking, object-oriented programming and,

real-time execution all at once. Within the printing

domain, embedded software engineers have to cope with

the following additional factors (see also figure 1):

• Cheaper hardware components need to be kept within

fault tolerances using intelligent controlling software.

• Software needs to compensate for fewer hardware com-

ponents that deliver more and better functionality.

• Rising equipment complexity creates more interaction

with sensors and actuators.

• Increasing printing speed.

• Higher levels of embedded system integration.

• Better user interfaces, and in general, more complex

interfacing with an increasing number of standards

and protocols.

• Increased need for modularity.

• Decreasing time to market.

• Lower total cost of ownership.

All this has presented embedded systems developers

with immense challenges. At the end of the 1990s,

surveys showed that future projects would fail to meet

requirements or even fail completely, because of the

overall poor state of programming tools in complex real-

time environments.2

Historical overview

The race for complexity

Océ White Paper | July 2007 The future of real time embedded systems | 6

While engineering practices evolved from

“no method” to “UML”, on-board memory

capacity increased by a factor 1000 in the past

two decades. Overall system complexity has

risen even faster.

Varioprint 6250

• World fastest duplex printer

(250 images/minute).

• 100% accurate registration.

• Automatic and complete job recovery.

• Printing all paper formats between

178 x 203 and 320 x 488 mm.

• Productive mixed media printing

from 12 different trays.

Figure 1: Embedded systems complexity in printing equipment

Historical overview

The race for complexity

Product Year Method OS Memory
(ROM)

Processor Language Images/
minute

Print
resolution

1900 1979 No No 64 K 8085 Assembler 45 Analog

2500 1984 Yourdon Own 394 K
8088 &

68000
C/Pascal 100 Analog

3165 1995
Ward &

Mellor
VxWorks 1 M

8088 &

68000
C 62 600 DPI

Varioprint

2090
2002

UML / Rose

RT
VxWorks 5*4 M

5*AMD SC

520
C++ 85 600 DPI

Varioprint

6250
2006

UML / Rose

RT

VxWorks &

Own

1*64 M &

16*256 K

Celeron &

16*Infineon

XC167

C++ & C 250 1200 DPI

Océ White Paper | July 2007 The future of real time embedded systems | 7

In 2001, Océ Technologies set out designing the

fastest cut sheet duplex printer in the world. The initial

specifications of the “Varioprint 6250” were a real

challenge to embedded systems. Printing speed should

be a mind-blowing 250 images per minute – 80% faster

than anything ever built. Printing should be duplex

in near-offset quality. At the time, it was unknown

whether the physical constraints of the printing process

and the required synchronization of paper flow and

high-bandwidth digital image streams would allow for

printing both sides of a sheet of paper at the same time

at the required printing speed. The machine should be

capable of handling any paper format and size, including

rare oversizes, without slowing down. Up to twelve paper

trays – each tray possibly loaded with pre-printed or

prepunched media – should be addressed independently.

Manual reloading of the paper trays should not interrupt

the printing process. The system should be capable of

detecting paper size and orientation fully automatically.

A micro-positioning system correctly adjusts each sheet‘s

time of arrival, rotation and aligning, all adjusting done

in less then half a second.

One of the most challenging tasks was designing a

system that would keep track of dozens of individual

sheets of paper at the same time, while they were routed

through the paper path. The paper path could be of

variable length, due to different system configurations,

and had a maximum length of more than 15 meters.

Planning, routing, positioning, synchronizing and

printing 6 million sheets of paper per month through

this path, while handling more than a dozen types

of sheets simultaneously in the path and coping with

possible media jams safely and correctly, was at the limit

of what embedded systems would be capable of.

It would have been impossible to use one or even a few

central processing units to control this machine. Such

a centralized system would simply fail to meet critical

timing demands.

Also, due to physical distances between the embedded

hardware and the sensors and actuators mounted

throughout the machine, large amounts of cabling

would have been required. We decided to use the most

advanced hardware architectures and software tools

available. In the new, distributed architecture, we

introduced intelligent subnodes.3

The heart of an intelligent subnode is formed by a

universal embedded control platform. The platform

consists of a high performance 16-bit CPU, running at

40 MHz. To guarantee hard real-time responsiveness,

the nodes run a fixed time scheduler, with a round

robin time of 2 msec. Time slots are 100 µsec with the

maximum delay between signals caused by interrupt

handling of just 30 µsec.

Case example

Building the fastest duplex printer in the world

Océ White Paper | July 2007 The future of real time embedded systems | 8

A total of 17 such control cards are placed throughout

the hardware, each on top of a customized I/O board.

Some of the nodes meet hard real-time requirements,

others are used for soft real-time actions. The subnodes

are connected through two Controller Area Network

(CAN) buses to a main control unit, running a fast,

2Ghz Intel Pentium Celeron. The CAN buses have been

specifically designed to be robust in electromagnetically

noisy environments such as automobiles. Since the

physical distances in a car are comparable to those in

our printers, the CAN bus is ideally suited for use in

printing equipment. The two CAN buses use different

dedicated protocols: the Inter Node Protocol (INP)

and the Océ Finisher Interface (OFI) protocol. A USB

2.0 connection is used for transmitting compressed

bitmaps (600x1200 dpi) from the controller to the image

datapath subnode. Another optional USB network

connects all subnodes. This enables direct high-speed

logging and debugging raw sensor data in R&D.

All actions must be synchronized over the non-real-time

CAN bus. In order to accomplish this, actions must be

timestamped and then sent to subnodes in advance. It

also implies that all subnodes and mainnode have the

same notion of time (see figure 2).

Thus, interconnection and interoperation were the

keywords in this new machine. For the embedded

system developer team, this translated into convoluted

architectures and critical timing and integration issues.

We realized that in order to avoid project delays,

missed deadlines, and exploding costs, we would have

to do more than just design software and hardware.

We needed a fundamental look at our existing software

tools (Step 1), system architectures (Step 2), and design

strategies (Step 3). It would also be necessary to make

testing and quality control procedures more systematic

and efficient (Step 4).

Case example

Building the fastest duplex printer in the world

Océ White Paper | July 2007 The future of real time embedded systems | 9

USB 2.0 connection
Used for high speed logging of raw sensor data. Also used
for the transport of bitmap data from controller to subnode

2 CAN databuses (INP, OFI):
- 250 kbit /sec bi-directional datatransfer
- Facilitates communication between mainnode and subnodes

Sensor /actuator cable
Used for high speed logging of raw sensor data

Ethernet connection
For logging and connection with controller

Interaction point
Sensor-triggered exchange moment at wich sheets
or images are passed to the next transport function.

Subnode with synchronised clock
Maximum time deviation: 10 �sec

Mainnode

Image Processing
x

Single “datapath” subnode with a Xilinx Spartan FPGA

Paper sheet micropositioning
x

Fault tolerance: 0,1 mm

Image circuitry
x

4 individual Hall-sensors, 6 motors
and the digital image generating
circuitry are synchronised, so that
front- and back image position
properly. Maximum positioning
fault tolerance: 0,1 mm within
250 ms

Mainnode
x

Intel Pentium Celeron, 2 Ghz clock 32 bits 64 MB
Flash, 256 MB RAM, Operating system: VxWorks
10/100 MB Ethernet, TCP/IP, SMB, 2 ports
CAN bus (pci)

Subnode processor card
x

Infineon XC167 at 40 MHZ,
8 kByte SRAM,
256 kByte FLASH
(image shows front- and backview)
On-Boards Memory:
128 kByte SRAM

USB 2.0 connection
Used for high speed logging of raw sensor data. Also used
for the transport of bitmap data from controller to subnode

2 CAN databuses (INP, OFI):
- 250 kbit /sec bi-directional datatransfer
- Facilitates communication between mainnode and subnodes

Sensor /actuator cable
Used for high speed logging of raw sensor data

Ethernet connection
For logging and connection with controller

Interaction point
Sensor-triggered exchange moment at wich sheets
or images are passed to the next transport function.

Subnode with synchronised clock
Maximum time deviation: 10 �sec

Mainnode

Image Processing
x

Single “datapath” subnode with a Xilinx Spartan FPGA

Paper sheet micropositioning
x

Fault tolerance: 0,1 mm

Image circuitry
x

4 individual Hall-sensors, 6 motors
and the digital image generating
circuitry are synchronised, so that
front- and back image position
properly. Maximum positioning
fault tolerance: 0,1 mm within
250 ms

Mainnode
x

Intel Pentium Celeron, 2 Ghz clock 32 bits 64 MB
Flash, 256 MB RAM, Operating system: VxWorks
10/100 MB Ethernet, TCP/IP, SMB, 2 ports
CAN bus (pci)

Subnode processor card
x

Infineon XC167 at 40 MHZ,
8 kByte SRAM,
256 kByte FLASH
(image shows front- and backview)
On-Boards Memory:
128 kByte SRAM

Figure 2: An overview of embedded systems within the Varioprint 6250

Case example

Building the fastest duplex printer in the world

Océ White Paper | July 2007 The future of real time embedded systems | 10

Step 1: Existing software tools

Facing the increasing difficulties with existing

software tools, Océ decided in 1998 to experiment

with Model Driven Development (MDD). This was

a remarkable step, since MDD was known primarily

in the telecommunications domain. In other real-time

software-design domains it was hardly ever used in

the actual process of coding software. At the time,

automatically generated code from models was

regarded as complex and resource-hungry. Most real-

time developers held (and some even do so today)

that the syntax of MDD tools would be too general

and imprecise. So how could MDD work for real-time

applications?

From our extensive experiments and real-world

experiences within running projects we have learned that

modern tools for MDD not only work for complex

systems using C++ under a real-time, multi-threaded

operating system, but that they also work surprisingly

well with severely constrained systems that utilize an

execution framework instead of a multi-threaded OS.4,5

We used an industry-leading MDD development

environment, which is based upon the ROOM

Language (ROOM/UML, see inset). The tool is fully

model driven and object oriented. It generates C++

or C, which runs on numerous operating systems.

Using this tool, we were able to decompose complex

systems into subsystems (see figure 3). This allowed

us to model a vast number of concurrent finite state

machines. This solution generates very efficient code on

targets varying from 8-bit micro controllers to 32-bit

general purpose processors.

Case example

Building the fastest duplex printer in the world

Unified Modeling Language

The Unified Modeling Language (UML) was developed in 1997 6. UML is a visual language and has both syntax and semantics.
Its graphical elements of objects are used as representations of a concept, but also tell you something about their specific content.
It has an extensive vocabulary for capturing behavior and process flow. And it can even be used to make a blueprint of software.
These blueprints, much like architectural drawings, use icons to represent structure (classes and objects, attributes, operations,
and relationships), function (the functionality of the system from the user‘s point of view) and behavior (sequences, activities, and
states).

UML was developed from earlier modeling languages, such as the Real-time Object Oriented Modeling language (ROOM).
ROOM was introduced by Bran Selic, Garth Gullekso and Paul T. Ward in 1994. The essential concepts of ROOM have been
incorporated into UML 2.0. Among these are composite structures, ports and message passing. It is these concepts that make UML
suitable for the construction, design and implementation of real-time systems.

The first tool which took advantage of ROOM was ObjecTime. This tool has evolved into “Rational Rose Real-Time” (RRT).
RRT is considered to be a leading tool for UML generated code in real-time embedded systems (http://www-306.ibm.com/
software/rational/). Interestingly, RRT is also used by NASA for the James Webb Space Telescope – a large, infrared-optimized
space telescope, scheduled for launch in 2013 (see: www.jwst.nasa.gov).

Océ White Paper | July 2007 The future of real time embedded systems | 11

Equipped with the MDD techniques, we were able to

design, build and debug the hugely complex system of

the “Varioprint 6250” (see figure 2). Design guidelines

were used to instruct the engineers how to create

simple and efficient models, even when using a lot

of concurrency. Such models are based on multiple-

processor, multiple-threaded hardware and software

architectures. Because of the run-to-completion

semantics of active objects, the usual difficulties, in

which the output of the process is unexpectedly and

critically dependent on the sequence of other events

(“race conditions”) were virtually absent. The common

and very difficult error in real-time design, in which

competing actions are waiting for each other to finish

(“deadlocks”), was no problem any more to our team.

With MDD, engineers were able to concentrate on

functionality and quality. Moreover, all of our engineers

could understand and talk to each other in the same

language. And since explaining a diagram is far more

simple than explaining a piece of code, MDD stimulated

dialogue within the organization as a whole.

Overall, the decision in favor of MDD greatly enhanced

the application development cycle, while improving

product maintenance and quality control.

H*

H*

H*

unitStatusUpdate

Idle

startTestRequest

startTestReplyError

SIWaitingFor StopReply

startTestReplyOk
stopTestReq

unexpected
EDMMessages

TestInProgress

testEnded

testStopReq

stopTestReply

initialize

unexpected
ClientMessages

SIWaitingFor Reply

testEnded

Figure 3: State diagram

Part of a hierarchical finite state machine.

The state transitions inside an active object

contain hand-written code. Concurrency

is guaranteed since the system ensures

that state transitions execute atomically (run

to completion). A code generator generates a

complete source file for the finite state machine,

including the hand-written code. Interestingly,

the generated code is never touched by the

engineers due to the abstraction that the model

offers. One exception to this is when code

is debugged at source level in order to look

at what happens inside state transitions. But

it is also possible to debug finite state

machines visually.

Case example

Building the fastest duplex printer in the world

Océ White Paper | July 2007 The future of real time embedded systems | 12

Step 2: Standardised system architectures

Much of the quality of a real-time system is defined

by its system architecture. Such an architecture gives a

picture of the hardware and software components in use,

their relationships to each other and to the environment,

and the principles governing the design and evolution

of the system.

So, before designing the “Varioprint 6250”, the Océ-

developer team introduced the “Embedded Software

Reference Architecture” (ESRA). ESRA defines the

generic context for the MDD software tools and

hardware and software components in use. It does so

by defining universal mechanisms and procedures for

handling the basic functionality of printing engines.

This means that ESRA defines status behavior,

controlling paper sheets and images, and error handling.

For distributed deployment, ESRA defines persistent

storage mechanisms and communication protocols.

ESRA also offers designers standardized methods for

developing and analyzing systems based on its

general architecture.

Designing, implementing, and maintaining a reference

architecture over a long period of time has proven to be

a delicate matter. The key issue is that the architecture

itself is not static: projects with new functionality come

in and old projects are discontinued. This makes ESRA

a managerial as well as a technological challenge.

From the technological point of view, one of the

main advantages of ESRA is that software deployment

is no longer tied to specific hardware deployments.

This means that ESRA standard architecture

components – which have been designed for large,

industrial printers – may also fit into smaller

office printers.

As for the managerial aspects, the success of a standard

system architecture is critically dependent on a flexible,

non-hierarchical organizational structure. Essential

elements are:

• Collective “ownership”: the reference architecture is

shared by all architects in “using” projects.

• No obligations: every architect has the freedom of

using solutions not covered in ESRA – provided that

sound arguments support such a decision.

• Team dialogue: architects and engineers are

regularly talking and working together and are all

trained in how to use the architecture (regular

three-day architecture courses teach the fundamentals

of ESRA).

• Interdisciplinary dialogue: Having a reference

architecture as a starting point enables the embedded

architect in an early phase to have impact on both

hardware and system architecture.

Overall, ESRA has established itself as a robust design

environment. Its main advantages are:

• New projects can be “jump-started” with total time

needed for making executable software for a working

product prototype reduced to just a few months.

• With ESRA taking care of much of the standard

functionality‘s of a new project, engineers can focus

on innovation.

• Research and development creates a progressive set of

knowledge, technologies, and experts.

• ESRA is a technology catalyst, providing dynamic

feedback and control to both software reuse and

model driven development (see figure 4).

ESRA‘s high level of system integration and modularity

allows for implementation on diverse printer models.

One of the most fascinating examples of hardware

independent deployment is that we are currently able

to use the same architecture on completely different

platforms: it runs on a high end distributed platform

with more than 18 subnodes, as well as on a very limited

platform with only a single processor.

Case example

Building the fastest duplex printer in the world

Océ White Paper | July 2007 The future of real time embedded systems | 13

Step 3: Reusing software components

With the right software tools and standard system

architecture available, the Océ developer team

encountered another major issue: software reuse.

Reusing software is essential for efficiency and

long-term product development. It means using

standardized software modules for meeting current

and future technological demands.

So, well before the “Varioprint 6250” was designed,

a small group of software engineers started delivering

components with standard behavior. The components

were described in UML models and ESRA data

structures. From the start, these models were tested

and used in multiple real-world projects. The projects

were all in different phases of the life cycle, having

different functional requirements and technological

innovations. Today, the number of software components

has grown to a set with which the complete standard

control software of any kind of printing equipment can

be built. (see figure 5,6)

This is a remarkable achievement, since software reuse

is a complex, and a highly knowledge-intensive subject.7

Software reuse must focus not only on the problems

related to developing reusable components, but also faces

many challenges related to keeping previously defined

reusable components up-to-date, slim, manageable

and useful. Finding the right balance between long-

term interests – universal applicable models – short-

term needs – suitability for particular projects, time to

market, ad hoc flexibility – may fail easily.

B
u

il
d

in
g

b
lo

ck
s

b
as

ed
up

on
th

e
ar

ch
ite

cture Powerful expression
o

f
arch

itectu
re

F
ra

m
ew

o
rk

fo
r

bu
ild

in
g

blo
cks

Effective reuse (inheritance, abstraction, etc.)

Software
reuse

Model driven
development

Reference
architecture

Projects

Reusable

components

Effective software
development and easy

integration of reuse
components

Requests fo
r

new components

(o
r c

hanges)
A

rc
h

it
ec

tu
ra

l
in

n
o

va
ti

o
n

Figure 4: ESRA as a
technology catalyst

Note the dynamic interaction

between projects, the reference

architecture, software reuse,

and MDD.

Case example

Building the fastest duplex printer in the world

Océ White Paper | July 2007 The future of real time embedded systems | 14

The most prominent causes of failure in reuse

projects are:

• Inferior quality. Risk: buggy reuse components that

do not meet the customers quality expectations

• “Top-down” approach. Risk: reusable components

become too large and generic. They are poorly

optimized for running projects. Priorities for bug

fixing and new functionality are getting out of sync

with the needs of engineering teams.

• Insufficient organizational support. Risk: the

immanent conflicting forces between short term

project needs and long term reuse portfolio strategies

may endanger the cooperation between engineers

and line management. Ultimately, engineers may

not want to participate in the “reuse-project” at all.

• Dogmatism. Risk: throttling innovation. When reuse

is applied dogmatically, engineers lack the freedom to

look for new solutions.

Managers

Product specific software

x-axis:
Products released in 1990 to 2010

y-axis:
Percentage reuse in projects

Controller interface

Services

Devices

Software reuse in product

1990

70

60

50

40

30

20

10

0

80

90

100

2000 2005 2010

25
00

DPS 4
00

Var
io

prin
t

20
90

Fu
tu

re

Pro
duct

s

Sta
rt

re
use

Var
io

prin
t

62
50

30
45

Functions

Tools

Case example

Building the fastest duplex printer in the world

Not all software is suitable for reuse.

Reuse can be much more effective in such

areas as “services” and “controller interface”

than in “functions” or “devices” (product-

specific coding).

• Controller interface: components for

communication with the controller PC.

• Managers: standard ESRA managers,

e.g. status manager, engine information

manager.

• Services: diverse service functions.

• Tools: development tools, e.g. for data logging

• Functions: machine-specific functionality,

e.g. paper handling.

• Devices: drivers for sensors and actuators.

Figure 5: Estimated and forecast net effect of reuse efforts within Océ from 2000-2010.

Océ White Paper | July 2007 The future of real time embedded systems | 15

We prevent the first two causes of failure, as described

on the previous page, by designing reuse software

components not as abstract concepts, but as building

blocks which can be directly used in currently running

projects. We also found social software techniques

helpful, such as giving everyone involved access to

an intranet website and a wiki. Both are used to

list all available reuse components, documentation,

release notes, and bug reports. The last two causes are

prevented by having full management commitment

and focus for innovation. This is something that starts

with the architecture and ends with evolved software

components. It is about having the right staffing and

competence available at every stage of the process.

Moreover, a “change control board” is in charge of

new functionality and bug fixing. The board also sets

maintenance priorities and discusses new developments

and releases. Engineers from running projects participate

in the board. Overall, an informal, flat organizational

structure has proven essential for software reuse.

Although reuse does not need MDD, we found that it is

greatly aided by the object orientation approach of

MDD. Interfaces are narrow and uniform. Inheritance

allows for adaptable behavior. Overall, reuse significantly

shortened our time-to-market, increased efficiency, and

improved the overall quality of the product.

Figure 6: Timeline

One of the challenges of software reuse is that projects are in different phases of their life cycle.

This makes finding the right balance between short-term goals (tight integration) and long-term

goals (modularity) a delicate matter.

Case example

Building the fastest duplex printer in the world

DPS 400

DPS 2090

DPS 6250

Future 1

Future 2

Future 3

Future 4

2001 2003 2004 2005 2006 20072002

Océ White Paper | July 2007 The future of real time embedded systems | 16

Step 4: quality control

Debugging and testing the new “Varioprint 6250”

turned out to be a real challenge to our developers. For it

is still not feasible to prove from theory that a modeled

deterministic finite state machine will work as specified

in all possible states.8 This is because there are no

mature simulation tools available that would allow

formal analyses of problems such as deadlocks or critical

timings for every possible execution path of the system.

Testing and prototyping thus has to run through various

scopes and states of complexity:

• Simulation: parts of the new design are simulated on

a desktop computer. A complete engine node can be

tested on a Windows PC, since MDD-models contain

hardly any platform dependent code. Porting to the

real target platform is easy.

• Table-top testing: a fragment of the target hardware

is built with a few sensors and actuators. This allows

for early-phase testing of critical real-time control

loops. Peer reviews check the validity of the design.

Automatic regression tests check whether program

changes had any unintended effects on overall

software functionality.

• Embedded testing: a functional representation of the

real machine is built, with all required sensors and

actuators available. The path of the paper through

the machine is simulated. This enables testing of the

controlling architecture, drivers, interfaces and inter-

processor communication. This approach results

in a high level of software quality before integration

with the actual printer, which in turn results in

very short integration lead times.

An important consideration is the difficulty of

debugging software once it has been downloaded to

the target hardware. Tools such as debuggers and

in-circuit emulators are only of use when a problem

can be reproduced. And this is not always the case.

Reproducing errors may also be too time-consuming

because of the non-deterministic character of the

embedded software.

The Océ-team developed a method in which nearly all

bugs can be traced without the need for reproducing

failure scenarios. This has been achieved by:

• Data logging. All internal events, states and other

relevant information for every state of every processor

and subnode is logged, resulting in 12.5 megabytes of

logging per minute. Subnodes are equipped with extra

logging facilities, including a high-bandwidth USB

2.0 interface. Even in production, extensive logging is

being carried out.

• Data probing. The transmission on the CAN

databuses can be probed directly and in real-time.

The high-speed datatransmission between engine and

controller, via a 100 Mbit ethernet connection, can

also be probed.

• Data injection. The same channels available for

probing can be used for real-time injection of

raw data.

We developed sophisticated “stubbing” methods with

which various parts of the physical hardware can be

replaced by a simulated part on different levels of the

system hierarchy. “Stubbed” components can vary from

individual sensors and actuators to complete subnodes.

With stubbing, we are able to simulate all real-time

sensor data that a physical sheet of paper produces when

it moves through the paper path of the target machine.

This enables us to test large portions of the paper

handling machinery, without wasting even one single

physical sheet of paper.

Case example

Building the fastest duplex printer in the world

Océ White Paper | July 2007 The future of real time embedded systems | 17

Today, Océ‘s state-of-the-art real-time embedded system

development environment performs extremely well.

And it still carries many promises for the future. How

do we translate those promises into real innovations?

Several times a year, we let a group of architects and

engineers identify future technologies that the company

may require. A “technology road map” is then created

and if necessary, action is taken.

On a broad level, our current technology roadmap shows

three future developments within embedded systems.

First, new software tools will solve numerous technical

design and debugging issues. A general trend is the

integration of stand-alone design- and debugging tools

into one intelligent “knowledge system”. Interestingly,

powerful open source tools have entered the embedded

domain in recent years. Open source solutions

such as “Eclipse” offer new perspectives on building

and maintaining high-quality extensible architectures,

runtimes, and application frameworks (see www.

eclipse.org).

Second, further strategic application of MDD, software

reuse, and standard system architecture design will

bring the dream of embedded development – to use

context-dependent code as little as possible – further

within reach. This will mark a distinct shift in the

role of developers – from designers of customized code

to integrators of standard modules. One interesting

instance of such a development is the future role

of testing. With an ideal set of reusable software and

hardware modules available, developers would have

to spend less time testing. Instead, they would be able

to concentrate on innovations and new functionality.

A cross-disciplinary approach may be able to generate

testing, monitoring and design tools for other disciplines

in the printing industry, such as mechanics or chemistry.

Third, the role of simulations will increase substantially.

Future software tools will enable embedded system

developers to simulate a wide range of critical hardware

characteristics of the printing equipment. Such

simulation tools will not just enable detailed insight

in the printer‘s paper path, but will also be capable of

predicting power consumption, noise levels and other

environmental characteristics. New, cross-domain

simulation tools might be able to predict things such

as mechanical wear and tear of components over time.

With such tools, it would be possible to analyse all

possible hardware failures in the equipment life-cycle

in great detail even well before the actual machine has

been built.

In a more distant future, it may be possible that

three-dimensional simulation tools will revolutionize

maintenance and the development process of printers.

However, the real challenge of embedded system

engineering is not just to find ever more state-of-the art

technologies, but to explore new strategies for dealing

with the relentless rise in system complexity. At Océ, we

take pride being at the forefront of this endeavor.

Outlook

Meeting future demands of the printing industry

Océ White Paper | July 2007 The future of real time embedded systems | 18

Océ is one of the world’s leading suppliers of professional

printing and document management systems. Océ

employs 23.000 people world-wide. About 3.500 work

in Venlo, where headquarters, manufacturing, logistics

and R&D are located.

Océ was founded in 1877 in Venlo. The company

entered the copying business in 1920. In 1986, the first

fully self-developed printers were introduced. In 1994

the first digital copier/printers entered the market.

With 90 percent of Océ’s sales relating to digital

products, Océ is now ranked among the world’s top

100 IT businesses.

Total R&D manpower in Venlo is 1.000, making Océ

one of the top ten R&D companies in the Netherlands .9

About 8 percent of the total revenue of Océ is spent on

R&D. Most of the research is multi-disciplinary. Océ’s

total R&D budget expanded from about 60 million

Euro in 1986 to 220 million Euro in 2006.

Profile

Océ White Paper | July 2007 The future of real time embedded systems | 19

Acknowledgements

Text: Dr. Sybe Rispens

www.rispens.de

Design: Maximilian Werner

www.mw-kommunikationsdesign.de

References

1. Tanenbaum, Andrew. Computer Networks, Upper

Saddle River, NJ: Prentice Hall, 1996. Tanenbaum,

Andrew S. Modern Operating Systems, Prentice Hall

International, 2001.

2. Hyysalo, J., Parviainen, P. and Tihinen, M.

“Collaborative embedded systems development:

survey of state of the practice,” Engineering of
Computer Based Systems, March, 2006, p. 9-30.

3. Kopetz, Hermann. Real-Time Systems: Design
Principles for Distributed Embedded Applications,
Berlin: Springer, 1997, pp. 29-45. Rao, Navneet.

“Next-Generation 65nm FPGA”, FPGA and
structured ASIC Journal, Volume X, Number 3, 2007.

4. Dohmen, Lou A. J. and Somers, L. J. “Experiences

and Lessons Learned Using UML-RT to Develop

Embedded Printer Software.” Product Focused
Software Process Improvement. 4th International

Conference, PROFES 2002, p. 475-484.

5. Janssen, Ton and Graham, William. “Modeldriven

Development of Resource-constrained Embedded

Applications,” IBM technical report, June 2004.

(www-128.ibm.com/developers/rational/library/04/

r-3151/index.html)

6. Selic, Bran, Gullekson, Farth and Paul T. Ward.

Real-time object-oriented modelling, John Wiley &

Sons Inc, 1994. Booch, Grady, Rumbaugh, James

and Jacobson, Ivar. The Unified Modelling Language
User Guide, Addison-Wesley Professional, 1998.

Douglass, Bruce Powel. Real-Time UML: Developing
Efficient Objects for Embedded Systems, Pearson

Education, 1999. Pilone, Dan. UML 2.0 in
a Nutshell. A Desktop Quick Reference, O’Reilly

Media, 2005.

7. Gamma, Erich, Helm, Richard, Johnson, Ralph and

Vlissides, John. Design Patterns – Elements of Reusable
Object-Oriented Software, Reading, Massachusetts:

Addison Wesley, 1995.

8. Buttazzo, Giorgio C. Soft Real-Time Systems:
Predictability Vs. Efficiency, Berlin: Springer, 2005,

p. 195-206. Douglas, Bruce Powell. Real-Time Design
Patterns: Robust Scalable Architecture for Real-Time
Systems, Reading, Massachusetts: Addison-Wesley,

2002.

9. “Special R&D in cijfers”, Technisch Weekblad, 31.

March 2007, p. 21.

Printing for
Professionals

© 2007 Océ. Illustrations and specifications do not necessarily apply to products and services offered in each local market. Technical

specifications are subject to change without prior notice. All other trademarks are the property of their respective owners.

Océ R&D

St. Urbanusweg 43, Venlo, the Netherlands

P.O. Box 101, 5900 MA Venlo, the Netherlands

Telephone (+31) 77 359 22 22

Telefax (+31) 77 354 47 00

E-mail: info@oce.com

For general information about Océ: telephone (+31) 77 359 20 00

For information and services, visit us at www.oce.com

