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Abstract
Many architects struggle with a given large code-base, where a lot of knowledge
about the code is in the head of people or worse where the knowledge has disap-
peared. One of the means to recover insight from a code base is by measuring
and instrumenting the code-base. This presentation addresses measurements of
the static aspects of the code, as well as instrumentation to obtain insight in the
dynamic aspects of the code.
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Overview of Approach and Presentation Agenda
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System Overviews
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Case 1: EasyVision (1992)

EasyVision: 
 Medical Imaging Workstation
URF-systems


typical clinical

image (intestines)
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Examples of Macroscopic Fact Finding

version control information:

#new files

#deleted files

#changes per file since ...


package information:

# files


metrics:

QAC type information

# methods

# globals


> wc -l  *.m

72 Acquisition.m

13 AcquisitionFacility.m

330 ActiveDataCollection.m

132 ActiveDataObject.m

304 Activity.m

281 ActivityList.m

551 AnnotateParser.m

1106 AnnotateTool.m

624 AnyOfList.m

466 AsyncBulkDataIO.m

264 AsyncDeviceIO.m

261 AsyncLocalDbIO.m

334 AsyncRemoteDbIO.m

205 AsyncSocketIO.m
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Histogram of File Sizes EV R1.0
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Microscopic Sampling (Code Reading)

13 IndexBtree.m

12 IndexInteriorNode.m

13 IndexLeafNode.m

13 ObjectStoreBtree.m

12 ObjectStoreInteriorNode.m

13 ObjectStoreLeafNode.m


Example of small classes due to

database design;

These classes are only supporting constructs


4473 DatabaseTool.m

1291 EnhancementTool.m

1106 AnnotateTool.m

1291 EnhancementTool.m

3471 GreyLevelTool.m

1639 HCConfigurationTool.m

1007 HCQueueViewingTool.m

1590 HardcopyTool.m


Example of large classes due to

large amount of UI details


1541 GenericRegion.m

1415 GfxArea.m

1697 GfxFreeContour.m

4095 GfxObject.m

1714 GfxText.m

1374 CVObject.m

1080 ChartStack.m

1127 Collection.m

1651 Composite.m

1725 CompositeProjectionImage.m

1373 Connection1.m

1181 Database1.m

3707 DatabaseClient.m

3240 Image.m

1861 ImageSet.m


Example of large classes due to

inherent complexity;

some of these classes are really suspect
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Changes Over Time
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Simplified Medium Level Diagram
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The real layering diagram did have >15 layers
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Conclusions Static Exploration

Quantification helps to 
 calibrate 
the 
intuition 
of the architect


Macroscopic 
 numbers related to 
 code level
  
understanding provides insight


+ relative complexity

+ relative effort

+ hot spots

+ (static) dependencies and relations
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Layered Benchmarking
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Example: Processing HW and Service Performance
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Processing Performance
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Resource Measurement Tools

time


t
n-2
 t
n-1
 t
n

preamble to remove


start-up effects
 use case


object  instantations

heap memory usage


oit


ps

vmstat

kernel resource


stats


kernel CPU time

user CPU time

code memory

virtual memory

paging


heapviewer (visualise fragmentation)


Exploring an existing code base: measurements and instrumentation
17 Gerrit Muller

version: 0.3
16th June 2006

MICVtools



Object Instantiation Tracing
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Memory Instrumentation
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Overview of Benchmarks and Other Measurement Tools
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Tools and Instruments Positioned in the Stack
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Case 2: ARM9 Cache Performance

PCB
chip


CPU


Instruction

cache


Data

cache


memory
on-chip

bus


cache line size:

8  32-bit words


memory

bus


200 MHz
 100 MHz


Exploring an existing code base: measurements and instrumentation
22 Gerrit Muller

version: 0.3
16th June 2006

PHRTarmCacheExample



Example Hardware Performance
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Actual ARM Figures
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Performance as Function of all Layers
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Annotated Performance Formule
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Keep iterating!
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Discussion propositions

system context


system

software


0. many design teams have lost the

overview of the system


1. a good (sw) architect has a

quantified understanding of system

context, system and software


2. a good design facilitates

measurements of critical aspects

for a small realization effort
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