
Exploring an existing code base: measurements and
instrumentation

by Gerrit Muller Embedded Systems Institute
e-mail: gerrit.muller@embeddedsystems.nl

www.gaudisite.nl

Abstract
Many architects struggle with a given large code-base, where a lot of knowledge
about the code is in the head of people or worse where the knowledge has disap-
peared. One of the means to recover insight from a code base is by measuring
and instrumenting the code-base. This presentation addresses measurements of
the static aspects of the code, as well as instrumentation to obtain insight in the
dynamic aspects of the code.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

16th June 2006
status: draft
version: 0.3

typical small testprogram

create steady state

t
s
 = timestamp()

for(i=0;i<1M;i++) do something

t
e
 = timestamp()

duration = t
 s
 - t
e

small test programs

HW support

(computing) hardware

operating system

services

applications

instrumentation

small test programs

test suite

task manager

perfmon

ps, vmstat

small test programs

tools

OIT

visual inspection

small test programs

heapviewer

OS

m
em

or
y

in
st

ru
m

en
ta

tio
n

processing

parametrized

processing

Problem Statement

complex

system

created by

>100 people

code

repository

> 1Mloc

> 1k files

document

repository

> 100 klines

> 1k docs

>100 people

left

wanted:

new functions and interfaces, higher performance levels,

improvements, et cetera

given:

Exploring an existing code base: measurements and instrumentation
2 Gerrit Muller

version: 0.3
16th June 2006

EBMIproblem

Overview of Approach and Presentation Agenda

1 collect overviews

2 study static structure

2A macroscopic fact finding

2B microscopic sampling

2C construct medium level diagrams

software

system

3 study dynamic behavior

3A measurements

3B construct simple models

size, effort

relations

code reading

time

resources

4.
 it

er
at

e

Exploring an existing code base: measurements and instrumentation
3 Gerrit Muller

version: 0.3
16th June 2006

EBMImethod

SW Overview(s)

Registry

NameSpace

server

Monitor

Broker

Event

manager

Transparant

Communication

Persistent

Storage

Abstraction

Layer

Device

independent

format

Plug-in

framework

Queue

manager

Spool server

Resource

scheduler

Plug & play

Configurable

pipeline

Property

editor

Session

manager

Compliance

profile

Application

hardware abstraction layer

middleware services

applications

in
fra

-

st

ru
ct

ur
e

mechanism centric
 (over)simplistic

delivery centric

Exploring an existing code base: measurements and instrumentation
4 Gerrit Muller

version: 0.3
16th June 2006

EBMIinputs

System Overviews

illuminator
laser

sensor

pulse-freq, bw,

wavelength, ..

uniformity

lens

wafer

reticle

aerial image

NA

abberations

transmission

laser

light source

illuminator

beam

shaping

lens

projection

reticle stage

positioning

wafer stage

positioning

m
ea

su
re

m
en

t

al

ig
nm

en
t,

le
ve

lli
ng

reticle

handler

input/output

wafer

handler

input/output

C&T

contanimation,

temperature

system

control

coordination

light

reticles

wafers

laser
 illumi-

nator
 lens
 reticle

stage

wafer

stage

measure-

ment

reticle

handler

wafer

handler
C&T

system

control

coordination

vertic

al

motio

n

hori-

zontal

motio

n

vertic

al

motio

n

hori-

zontal

motio

n

ethernet

VME
VME

250

mm/s

wafer

reticle

slit
v
 y

t

v
 x

ex
po

se

ex
po

se

st
ep

dynamic exposure through slit

subsystems
 control hierarchy

kinematic

physics/optics

Exploring an existing code base: measurements and instrumentation
5 Gerrit Muller

version: 0.3
16th June 2006

EBMIsystemDiagrams

Case 1: EasyVision (1992)

EasyVision:
 Medical Imaging Workstation
URF-systems

typical clinical

image (intestines)

Exploring an existing code base: measurements and instrumentation
6 Gerrit Muller

version: 0.3
16th June 2006

MSeasyvision

Examples of Macroscopic Fact Finding

version control information:

#new files

#deleted files

#changes per file since ...

package information:

files

metrics:

QAC type information

methods

globals

> wc -l *.m

72 Acquisition.m

13 AcquisitionFacility.m

330 ActiveDataCollection.m

132 ActiveDataObject.m

304 Activity.m

281 ActivityList.m

551 AnnotateParser.m

1106 AnnotateTool.m

624 AnyOfList.m

466 AsyncBulkDataIO.m

264 AsyncDeviceIO.m

261 AsyncLocalDbIO.m

334 AsyncRemoteDbIO.m

205 AsyncSocketIO.m

Exploring an existing code base: measurements and instrumentation
7 Gerrit Muller

version: 0.3
16th June 2006

EBMImacroscopic

Histogram of File Sizes EV R1.0

0
 1000
200
 600
400
 800
 1200
 1400

20

40

60

80

100

120

25

10

1500..

2000

2000..

4000

3

>4000

largest file:

4473 lines

DatabaseTool.m

legend

size OK, sample few

slightly suspect,

sample some

suspect, have a look

Exploring an existing code base: measurements and instrumentation
8 Gerrit Muller

version: 0.3
16th June 2006
EBMIhistogram

Microscopic Sampling (Code Reading)

13 IndexBtree.m

12 IndexInteriorNode.m

13 IndexLeafNode.m

13 ObjectStoreBtree.m

12 ObjectStoreInteriorNode.m

13 ObjectStoreLeafNode.m

Example of small classes due to

database design;

These classes are only supporting constructs

4473 DatabaseTool.m

1291 EnhancementTool.m

1106 AnnotateTool.m

1291 EnhancementTool.m

3471 GreyLevelTool.m

1639 HCConfigurationTool.m

1007 HCQueueViewingTool.m

1590 HardcopyTool.m

Example of large classes due to

large amount of UI details

1541 GenericRegion.m

1415 GfxArea.m

1697 GfxFreeContour.m

4095 GfxObject.m

1714 GfxText.m

1374 CVObject.m

1080 ChartStack.m

1127 Collection.m

1651 Composite.m

1725 CompositeProjectionImage.m

1373 Connection1.m

1181 Database1.m

3707 DatabaseClient.m

3240 Image.m

1861 ImageSet.m

Example of large classes due to

inherent complexity;

some of these classes are really suspect

Exploring an existing code base: measurements and instrumentation
9 Gerrit Muller

version: 0.3
16th June 2006
EBMIsampling

Changes Over Time

time

#c
ha

ng
ed

lin

es

 partial redesigns

failed in retrospect

redesign by

mature designer
 ever changing files e.g.:

systemConstants.h

ShakyImplementation.m

hot spots

Exploring an existing code base: measurements and instrumentation
10 Gerrit Muller

version: 0.3
16th June 2006

EBMIchangesOverTime

Simplified Medium Level Diagram

DSI

3M

RC

Desk, cabinets, cables, etc.

Standard IPX workstation
DOR
HC

interf

RC

interf

SunOS

NIX
RC

driver

HC

driver

DOR

driver

Spool
 HCU
 Store
 Image
 Gfx
 UI
 DB
 PMS-

net in

PMS-

net out

Medical Imaging R/F

Start

up

Install

Config

SW

keys

service

dev.

tools
 Print
 Store
 View
 Cluster

operating

system

toolbox

hardware

application

functions

user interface

connected

system

SW

infrastructure

legend

The real layering diagram did have >15 layers

Exploring an existing code base: measurements and instrumentation
11 Gerrit Muller

version: 0.3
16th June 2006
EBMIswLayers

Conclusions Static Exploration

Quantification helps to
 calibrate
the
intuition
of the architect

Macroscopic
 numbers related to
 code level

understanding provides insight

+ relative complexity

+ relative effort

+ hot spots

+ (static) dependencies and relations

Exploring an existing code base: measurements and instrumentation
12 Gerrit Muller

version: 0.3
16th June 2006

EBMIconclusionStatic

Dynamics� Static

running

system

behavior

functionality

emerging

properties

resources

(CPU, cache,

memory, bus BW,

network, ...)

data

code

user

interface

sy
ste

m

co
nte

xt

de
sig

n

co
nte

xt

images

patient info

configuration

performance

reliability

Exploring an existing code base: measurements and instrumentation
13 Gerrit Muller

version: 0.3
16th June 2006
EBMIdynamics

Layered Benchmarking

CPU

cache

memory

bus

..

(computing) hardware

typical values

interference

variation

boundaries

operating system

services

applications

network transfer

database access

database query

services/functions

duration

CPU time

footprint

cache

end-to-end

function

duration

services

interrupts

task switches

OS services

CPU time

footprint

cache

latency

bandwidth

efficiency

interrupt

task switch

OS services

duration

footprint

interrupts

task switches

OS services

tools

locality

density

efficiency

overhead

Exploring an existing code base: measurements and instrumentation
14 Gerrit Muller

version: 0.3
16th June 2006

EBMIbenchmarkStack

Example: Processing HW and Service Performance

spatial

enhancement

interpolate

Look up table

invert

contrast / brightness

graphics

merge

colour

LUT

HW
SW

monitor

image

from

database

ou
tp

ut

input

contrast

brightness

bi-linear

bi-cubic

legend

Exploring an existing code base: measurements and instrumentation
15 Gerrit Muller

version: 0.3
16th June 2006

MICVpresentationPipeline

Processing Performance

pipeline timing proportional

retrieve
 enhance
 interpolate
 LUT

g

f

x

dis-

play

accumulated processing time in seconds

0.05s
0.025s
0.075s
0.2s
0.5s
0.3s

raw

image

resized

image

grey-

value

image

gfx

retrieve
 enhance

lookup

(LUT)

gfx

merge
 display
view-

port

enhanced

image

inter-

polate

txt

next

0.9s
-1

C/B

7 s
-1

zoom

3 s
-1

update rate for

common user actions

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
 0

1024
2
 920
2
 920
2
 920
2
1024
2

Exploring an existing code base: measurements and instrumentation
16 Gerrit Muller

version: 0.3
16th June 2006

MICVprocessingTimes

Resource Measurement Tools

time

t
n-2
 t
n-1
 t
n

preamble to remove

start-up effects
 use case

object instantations

heap memory usage

oit

ps

vmstat

kernel resource

stats

kernel CPU time

user CPU time

code memory

virtual memory

paging

heapviewer (visualise fragmentation)

Exploring an existing code base: measurements and instrumentation
17 Gerrit Muller

version: 0.3
16th June 2006

MICVtools

Object Instantiation Tracing

AsynchronousIO

AttributeEntry

BitMap

BoundedFloatingPoint

BoundedInteger

BtreeNode1

BulkData

ButtonGadget

ButtonStack

ByteArray

0

237

21

1034

684

200

25

34

12

156

-3

-1

-4

-3

-1

-3

0

0

0

-4

+3

+5

+8

+22

+9

+3

1

2

1

+12

[819200]

[8388608]

[13252]

class name
 current

nr of

objects

deleted

since

t
n-1

created

since

t
n-1

heap

memory

usage

Exploring an existing code base: measurements and instrumentation
18 Gerrit Muller

version: 0.3
16th June 2006

MICVoitTool

Memory Instrumentation

measured

code

OS

data

bulk data

fragmen-

tation

200

MB

budget

accountable

by OS services

and OIT

unaccounted

big lump

manually

instrumented
unaccounted

leftover

Exploring an existing code base: measurements and instrumentation
19 Gerrit Muller

version: 0.3
16th June 2006

EBMImemoryInstrumentation

Overview of Benchmarks and Other Measurement Tools

Byte benchmark
 computer platform performance

OS, shell, file I/O

coarse
 new hardware

new OS release

test / benchmark
 what, why
 accuracy
 when

SpecInt (by suppliers)
 CPU integer
 coarse
 new hardware

file I/O
 file I/O throughput
 medium
 new hardware

image processing
 CPU, cache, memory

as function of image, pixel size

accurate
 new hardware

Objective-C overhead
 method call overhead

memory overhead

accurate
 initial

socket, network
 throughput

CPU overhead

accurate
 ad hoc

data base
 transaction overhead

query behaviour

accurate
 ad hoc

load test
 throughput, CPU, memory
 accurate
 regression

se
lf

m
ad

e

pu

bl
ic

Exploring an existing code base: measurements and instrumentation
20 Gerrit Muller

version: 0.3
16th June 2006

MICVbenchmarks

Tools and Instruments Positioned in the Stack

typical small testprogram

create steady state

t
s
 = timestamp()

for(i=0;i<1M;i++) do something

t
e
 = timestamp()

duration = t
 s
 - t
e

small test programs

HW support

(computing) hardware

operating system

services

applications

instrumentation

small test programs

test suite

task manager

perfmon

ps, vmstat

small test programs

tools

OIT

visual inspection

small test programs

heapviewer

OS

m
em

or
y

in
st

ru
m

en
ta

tio
n

processing

parametrized

processing

Exploring an existing code base: measurements and instrumentation
21 Gerrit Muller

version: 0.3
16th June 2006

EBMIbenchmarkPositions

Case 2: ARM9 Cache Performance

PCB
chip

CPU

Instruction

cache

Data

cache

memory
on-chip

bus

cache line size:

8 32-bit words

memory

bus

200 MHz
 100 MHz

Exploring an existing code base: measurements and instrumentation
22 Gerrit Muller

version: 0.3
16th June 2006

PHRTarmCacheExample

Example Hardware Performance

memory

request
 w

or
d

1

w
or

d
7

w
or

d
4

w
or

d
3

w
or

d
2

w
or

d
8

w
or

d
6

w
or

d
5

38 cycles

memory access time in case of a cache miss

200 Mhz, 5 ns cycle: 190 ns

data

memory

response

22 cycles

Exploring an existing code base: measurements and instrumentation
23 Gerrit Muller

version: 0.3
16th June 2006

EBMImemoryTimingARM

Actual ARM Figures

ARM9 200 MHz

context switch

Code
 Time

From cache
 2 µs

After cache flush
 10 µs

Cache disabled
 50 µs

Exploring an existing code base: measurements and instrumentation
24 Gerrit Muller

version: 0.3
16th June 2006

PHRTarmCacheActualFigures

Context Switch Overhead

t
overhead
 n
context switch
 t
context switch
*
=

n
context switch

(s
-1
)
 t
overhead

CPU load

overhead

t
context switch
 = 10µs

500

5000

50000

5ms

50ms

500ms

0.5%

5%

50%

t
overhead

1ms

10ms

100ms

0.1%

1%

10%

t
context switch
 = 2µs

CPU load

overhead

Exploring an existing code base: measurements and instrumentation
25 Gerrit Muller

version: 0.3
16th June 2006

PSRTcontextSwitchOverhead

Performance as Function of all Layers

hardware

operating system

services

applications

tools

system performance = f(
 ,

,

,

,

)

w
ha

t i
s

us
ed

?

ho

w
 o

fte
n?

ho
w

 m
uc

h

do

es
 it

 c
os

t?

Exploring an existing code base: measurements and instrumentation
26 Gerrit Muller

version: 0.3
16th June 2006

EBMIperformanceFormula

Annotated Performance Formule

hardware

operating system

services

applications

tools

system performance = f(

,

,

,

,

)

cache miss: 190ns

hit-rate, miss-rate,

#transactions

interrupt-rate, task switch rate

CPU-load

transaction overhead: 25 ms

interrupt latency: 10 us

task-switch: 10 us

(with cache flush)

Exploring an existing code base: measurements and instrumentation
27 Gerrit Muller

version: 0.3
16th June 2006

EBMIperformanceExample

Keep iterating!

zoom in on suspect parts

code reading

problematic

dynamic

properties

static

structure

new measurements

and experiments

create

(recover)

insight in

complex

system

Exploring an existing code base: measurements and instrumentation
28 Gerrit Muller

version: 0.3
16th June 2006

EBMIiteration

Discussion propositions

system context

system

software

0. many design teams have lost the

overview of the system

1. a good (sw) architect has a

quantified understanding of system

context, system and software

2. a good design facilitates

measurements of critical aspects

for a small realization effort

Exploring an existing code base: measurements and instrumentation
29 Gerrit Muller

version: 0.3
16th June 2006

EBMIpropositions

