
Architecture Deployment & Verification
Compile- and run-time dependencies

Rick Everaerts, Philips Medical Systems, Medical IT Best
23th Systems/software Architecture Study Group Meeting
Tuesday February 1st, 2005

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 2

RIS/PACS

Front-End Archive

Modalities Workspots

Shared Data, Applications & Services

Modality
Architectures

RIS/PACS
Architecture

Shared MIP Architecture

Back-End AdminDedicated
Modality

Multi
Modality Diagnostic Review

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 3

Architecture Deployment & Verification
Compile- and run-time dependencies

• Introduction
– Interfaces, Information Models, Components

• Deployment
– Compile-time dependencies
– Run-time dependencies

• Verification
– Compile-time dependencies
– Run-time dependencies

• Discussion Points

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 4

Introduction: from Objects to Components

TechnicalTechnical
Component Component

KitKit

BasicBasic
TechnicalTechnical

InfrastructureInfrastructure

CommercialCommercial
ComponentsComponents

.NET, COM, Windows.NET, COM, Windows

SystemsSystems

Solaris, WindowsSolaris, Windows

ClassClass
ClassClass

ClassClass

ClassClass

ClassClass
ClassClass

ClassClass

ClassClass
ClassClass

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 5

Introduction: Interfaces, Info Models & Components

• Interfaces:

– Define the syntax

– Generic access points to functionality

• Info Models:

– Define the semantics

– Allow for specialisation of the interfaces

– Are means of variability
• Components:

– Are the actual implementation
– Unit of composition of interfaces
– Define the set of capabilities

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 6

Introduction: Interfaces Design

• Provides Interface:
– Component guarantees to implement the

functionality associated with the interface

• Requires Interface:
– Component accesses functionality through this

interface and relies on the functionality to be
implemented outside the component

• Optional/Mandatory interfaces

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 7

Introduction: Interfaces Design Rules
• Think in interfaces not in implementations
• Make as few assumptions as possible about the

execution environment of a component

Component creator should model all pieces of Component creator should model all pieces of
functionality that have to be functionality that have to be

‘‘overruledoverruled’’ by the component user by the component user

through through ‘‘requiresrequires’’ interfacesinterfaces

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 8

Introduction: Information Models
• Explicitly managed and defined in UML

– Team of architects with weekly meetings

• Implemented as generic Data Objects

• Described by a Data Dictionary

• Easy streamable to/from XML

• Examples:

– PMS Imaging Information Model (PIIM)
– Configuration Information Model (CIM)
– Performer Information Model (PIM)

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 9

Deployment: compile-time dependencies

BaseBase
Interfaces, Information ModelsInterfaces, Information Models

Utility Classes, Base Classes, COM Wrapper FrameworkUtility Classes, Base Classes, COM Wrapper Framework
Job HandlingJob Handling

Test FrameworkTest Framework

ConnectivityConnectivity DatabaseDatabase ViewingViewingServicesServices

.NET Framework.NET Framework

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 10

Deployment: compile-time dependencies
• Split the source code archive into:

– Public and Private (external/internal)

– Interfaces, Information Models, Utilities (allowed to be used directly)

– Segments (ownership/functionality)

– Delivery code and Test and Tools

• Namespace reflects the directory structure (1:1)
Philips.PmsMip.Public.Interfaces

.InformationModels

.Utilities.<segment>

Philips.PmsMip.Private.Interfaces

.InformationModels

.<segment>

.Tests.<segment>

.Tools.<segment>

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 11

Deployment: compile-time dependencies

• Deliverable libraries contain namespace prefix
– E.g. Philips.PmsMip.Public.Interfaces.dll

• Base segment owns/manages Public/Private:
– Interfaces

– InformationModels

– Utilities

• Upwards compatibility of Public Interfaces/Information Models
– Recompilation old application should be enough

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 12

Deployment: run-time dependencies
• Broker instantiates classes via reflection

– Aliases and classes mapping are defined in XML format

– Mapping of classes to dll’s are generated as part of Build

– Classes instantiated via Broker are cached

• Example of Broker usage:
string context = "Public";

IBroker broker = Broker.GetBroker(context);

string alias = "ColorManager";
IColorManager colorManager = (IColorManager)

broker.CreateInstance(alias);

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 13

Deployment: dependency rules
1. Program by interfaces

– Avoids compile time dependencies
– Makes it possible to replace an implementation by another one
– Shields public methods not defined in interface
– Never change an interface once released

2. No compile time dependencies between segments, except to Base
segment

3. No run-time dependencies between segments, except to Base segment
or specific identified via Broker

4. No compile-time dependencies from Delivery code to Test and Tools
allowed

5. No runtime dependencies from Delivery code to Test and Tools
allowed

6. No compile time dependencies from Public to Private packages

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 14

Allowed compile-time dependencies between segments

Base

ViewingConnectivity Database
Services

.NET
framework

Connectivity
Tests Tools

Viewing
Tests Tools

Database
Tests Tools

Services
Tests Tools

Base Tests
Tools

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 15

Verification: compile-time dependencies

• Build order of Visual Studio projects is fixed (list of solutions)
1. Base delivery code
2. Per other segment the delivery code
3. Tools/Test code Base segment
4. Tools/Test code per other segment

• Dependency check is done on the Visual Studio projects

– Check the references (dll) in Visual Studio projects
– Possibility to specify segment: namespace/dll mapping

Private base
Base:Philips.PmsMip.Private.Base
Base:Philips.PmsMip.Private.InformationModels
Base:Philips.PmsMip.Private.Interfaces
Base:Philips.PmsMip.Private.Utilities

• Build will fail for any violation, including Coding Standard
– Check on namespace and class file directory structure

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 16

Verification: run-time dependencies
Automatic regression testing

• Use Test framework
• Set-up Test Environment as close as possible to the real situation
• Test against Mandatory and Optional interfaces
• Vary the test data
• Test all flexible aspects of components
• Always keep the software working
• Test alternative usage's of components
• Keep improving (automated) test cases over time
• Measure code coverage and improve if too low
• Make reference implementations or stubs
• Refactor the (automated) test cases when needed
• Investigate why a bug was not found and take appropriate actions
• Also test non-functional requirements (memory, CPU, etc)

PMS Medical-IT Best, Rick Everaerts, SASG meeting, Tuesday February 1st, 2005 17

Discussion points

• Is namespace and directory 1:1 mapping really needed for compile-time
dependency check?

• How can you make sure you do not need tools/tests at runtime, if you use
automatic regression tests for testing the product code?

• Can run-time dependencies be checked statically?

• Upwards compatible without recompilation old application?

