
1

A good practice is to be complete
Preventing incompleteness problems in software architectures

Frank van den Berk



2

Presentation setup

♦ Part I: Incompleteness often leads to problems
♦ Part II: Ways to prevent incompleteness problems



3

Examples of architecture problems

♦ Professional system I
• Concurrency got too little attention in architecture
• >6 months testing, lots of race conditions and 

performance problems

♦ Consumer system
• Predictable performance enhancements not 

supported by architecture
• Out of business now, because they could not 

keep up with competition



4

Examples of architecture problems

♦ Professional system II
• No adequate mechanisms for diagnostics 

provided by architecture
• Field problems took ages to solve, angry 

customers, no time for new developments

♦ Professional system III
• Exception behavior hardly analyzed by 

architects
• Lots of refactoring in test phase, missed market 

window (twice)



5

Examples of architecture problems

♦ Professional system IV
• No mechanisms defined to configure the software
• Some desired configurations of the system could 

not be realized - they did not have the courage to try

♦ Setting up new architectures (several examples)
• Architects tend to focus on a few promising and 

new aspects
• Architecture is incomplete, so either project is 

cancelled or other aspects are solved in many 
different ways by many different engineers



6

Incompleteness often leads to problems …

Most software consists of two parts:
♦ A part that was designed by the architects
♦ A part that should have been designed by the 

architects
The latter part often leads to the biggest problems..



7

Two “dimensions” of incompleteness

1. Important subjects not covered

2. Too little 
detail (gaps 
with engineers), 
or too much 
detail (lost 
time)

(picture by Gerrit Muller)



8

A good practice is to be complete ..?

There is much to gain from good practices 
to prevent incompleteness problems

Some considerations:
♦ An architecture is never complete

• … but there are many types of incompleteness; 
not all of them are harmless

♦ “Completeness” has a different meaning for every 
system
• … but the practices to prevent incompleteness are 

very similar



9

Ways to prevent incompleteness problems

Good practices to decide what has to be done:
♦ Regular “quick scans” on completeness
♦ Explicit reviews, involving the stakeholders
♦ Clear boundaries for the architect’s tasks
Good practices to ensure that it is done:
♦ A plan
♦ A delegation structure
♦ Explicit risk management



10

Ways to prevent incompleteness problems

Good practices to decide what has to be done:
♦ Regular “quick scans” on completeness
♦ Explicit reviews, involving the stakeholders
♦ Clear boundaries for the architect’s tasks
Good practices to ensure that it is done:
♦ A plan
♦ A delegation structure
♦ Explicit risk management



11

Regular “quick-scan” on completeness

1. Use a viewpoint-model (4+1, Soni, …), a checklist, a 
template, or combinations

2. Translate the abstractions from the model / checklist 
to your situation
• Create your own domain-specific checklist

3. Complete the checklist together with the stakeholders
4. Scan for missing parts in your architecture together 

with the stakeholders



12

A simple but effective checklist

Project 
aspects

Composition 
aspects

Maintenance 
aspects

Interaction 
aspects

End-user 
value

Technological 
capacity

Base 
aspects

Organizational 
capacity

Transform 
organizational capacity
to maximum end-user 
value at minimum cost

Transform 
technological capacity
to maximum end-user 
value at minimum cost



13

A simple but effective checklist

Project 
aspects

Composition 
aspects

Maintenance 
aspects

Interaction 
aspects

Base 
aspects

♦ Does everyone know what to expect 
when from the architects?

♦ Is the architecture definition planning 
synchronized with other relevant plans?

♦ Does the architecture support early 
mitigation of risks? 

♦ Does the architecture fit the (distribution 
of) knowledge and skills in the 
organization?

♦ Did we plan sufficient architecture 
(deployment) verification activities?

♦ Are the integration dependencies 
between the software elements defined?

♦ Do we need additional work products, 
such as stubs and test drivers, to support 
the test and integration strategy of the 
project?



14

♦ Do we know how to (de-)install both first 
and new software versions?

♦ Do we know how to (de-)install software 
patches?

♦ Do we know how to get information on 
the local software-, and system 
configuration?

♦ Do we know how to diagnose the 
software and the system?
• Its performance and other key 

aspects?
• In case of problems?

♦ Do we know how to handle 
replacements of system parts, including 
new versions of system parts?

♦ Do we provide all necessary 
maintenance information?

A simple but effective checklist

Project 
aspects

Composition 
aspects

Maintenance 
aspects

Interaction 
aspects

Base 
aspects



15

♦ Did we investigate important interaction 
scenarios with all relevant human users, 
hardware elements, and other software 
systems?

♦ Did we specify the interfaces with all 
relevant human users, hardware elements, 
and other software systems?

♦ Can we handle all possible (combinations 
of) interaction scenarios correctly and with 
sufficient performance?

♦ Are the available resources (memory, 
bandwidth, CPU power, …) sufficient to 
handle all possible (combinations of) 
interaction scenarios?

♦ Can we handle faults adequately?
♦ Are all critical interaction scenarios 

identified and under control?
♦ Do we know how to start up and shut down 

the system?

A simple but effective checklist

Project 
aspects

Composition 
aspects

Maintenance 
aspects

Interaction 
aspects

Base 
aspects



16

A simple but effective checklist

♦ Are all elements to implement the 
architecture defined?
• Did we define the scope, the 

interfaces, the behavior, and the 
contribution to overall system qualities 
or budgets for each component?

♦ Are all critical components and interfaces 
identified and under control?

♦ Is the mapping of the software elements 
to the hardware defined? Does it fit?

Project 
aspects

Composition 
aspects

Maintenance 
aspects

Interaction 
aspects

Base 
aspects



17

♦ Does every stakeholder know when and how the architects 
should be consulted? 

♦ Does every stakeholder know how to get the latest relevant 
information on the architecture?

♦ Did we identify and explain the styles and patterns we use?
♦ Do we have a glossary with all important terms and definitions?
♦ Do we have rules and mechanisms for basic recurring aspects 

in the software? 
• Design-, coding-, and naming conventions 
• Communication and synchronization mechanisms
• Configuration mechanisms
• ...

♦ Do we have rules and guidelines on how to configure and use 
generic tools and resources, such as development 
environments, resource files, and software libraries?

♦ Do we know what we want to re-use, and do we have rules and 
guidelines for these assets?

A simple but effective checklist

Base 
aspects



18

Ways to prevent incompleteness problems

Good practices to decide what has to be done:
♦ Regular “quick scans” on completeness
♦ Explicit reviews, involving the stakeholders
♦ Clear boundaries for the architect’s tasks
Good practices to ensure that it is done:
♦ A plan
♦ A delegation structure
♦ Explicit risk management



19

Purpose of an architecture review

The purpose of an architecture review is to 
understand the impact of an agreed set of 

architecturally significant decisions (ASD’s) 
on an agreed set of architecturally significant 

requirements (ASR’s)



20

Some review terminology

Architecture

Functional 
requirement

Architecture 
view

Quality 
requirement

Arch. Sign. Decision 
(ASD)

affects

described with

shaped by

Architecturally 
Significant 

Requirement (ASR)

Stakeholder Need
translates to



21

ATAM© steps

♦ Presentation
• Present the ATAM©

• Present business drivers
• Present architecture

♦ Investigation and Analysis (triage stage)
• Identify architectural approaches
• Generate quality attribute utility tree (QA profiles)
• Analyze architectural approaches

♦ Testing (detailed examination stage)
• Brainstorm and prioritize scenarios in a larger stakeholder 

group
• Analyze architectural approaches

♦ Reporting
• Present results



22

ATAM© key concepts

ATAM© identifies risks, sensitivity points and tradeoff points

♦ Risk: Architecturally important decision that has not been 
made or decision that has been made but whose 
consequences are not fully understood

♦ Sensitivity point: Parameter in the architecture to which 
some measurable quality attribute response is highly 
correlated

♦ Tradeoff point: Parameter of an architectural construct that 
hosts more than one sensitivity point and where the 
measurable quality attributes are affected differently



23

Benefits of architecture review

An architecture review helps to
♦ Identify risks and opportunities for improvement
♦ Improve communication and understanding between 

the stakeholders
♦ Improve the understanding of the architecture and its 

characteristics
♦ Help in making the right tradeoff decisions



24

Ways to prevent incompleteness problems

Good practices to decide what has to be done:
♦ Regular “quick scans” on completeness
♦ Explicit reviews, involving the stakeholders
♦ Clear boundaries for the architect’s tasks
Good practices to ensure that it is done:
♦ A plan
♦ A delegation structure
♦ Explicit risk management



25

Why clear boundaries are important

An architecture is complete if all relevant 
stakeholders are satisfied …

… but the architect is not the only one to 
satisfy the stakeholder needs.



26

Clear boundaries ..

1. What subjects?

2a. Produce, 
review, check, 
ignore, ..?

(picture by Gerrit Muller)2b. Were is the 
architect?



27

Defining clear boundaries

♦ Define boundaries in “tangible” terms, for example:
• Along system boundaries: 

– Aggregation level / components
– Interfaces
– Scenarios

• In terms of deliverables:
– What documents?
– What model parts?

♦ Make explicit what is expected from the architects
• Using a “RACI matrix”, for example



28

RACI explanation

♦ Responsible – Architect’s task is to deliver (or achieve) it; 
they provide the main effort

♦ Accountable – Architects are ultimately responsible, but do 
not deliver themselves (implies Consult) 

♦ Consult – Architects either have a particular expertise they 
can contribute (their advice will be sought) or must be 
consulted for some other reason before a final decision is 
made (implies Inform)

♦ Inform – Architects are affected by the activities and 
decisions and therefore need to be kept informed, but do 
not participate in the effort



29

How to ensure ACI ??

♦ “ACI” should be supported by the process!
• Review
• Test
• Are you automatically involved when necessary ..?

♦ Tool support
• Automatic code checking

– Naming conventions
– Automatic detection / prevention of scope violations

• Diagnostics on resource usage, performance
• Reverse engineering / round tripping tools



30

Ways to prevent incompleteness problems

Good practices to decide what has to be done:
♦ Regular “quick scans” on completeness
♦ Explicit reviews, involving the stakeholders
♦ Clear boundaries for the architect’s tasks
Good practices to ensure that it is done:
♦ A plan
♦ A delegation structure
♦ Explicit risk management



31

Benefits of (some form of) a plan

A plan helps to prevent incompleteness:
♦ You are forced to take time to get an overview of your 

work (and of the risks)
♦ You have a means to get the time and resources you 

need
♦ You can give dependable commitments

• And correct them in time
♦ Others can synchronize their activities with your plan, 

and vice versa
This only works if you maintain your plan



32

Setting up a plan for architecture activities

♦ Who will use the software architecture 
for their software development?

♦ What technological environments are 
relevant for the software?

♦ Who will use the software “in the field”?

♦ Are all related stakeholders 
represented?

♦ Are the needs, expectations and 
constraints of these stakeholders 
identified and prioritized?



33

Setting up a plan for architecture activities

♦ What are the subjects to cover?
• In what depth?

♦ What deliverables to develop or modify?
♦ What other activities?
♦ What are the risks and how to manage them?

• What is the extra work involved?



34

Setting up a plan for architecture activities

♦ What lifecycle to use?
• What milestones, how many iterations, iteration length?

♦ What resources do we need?
♦ How much time will each activity take?
♦ What are our schedule dependencies?
♦ What are the priorities?

• Based on key risks and key drivers of the system
♦ What is the best order of activities?
♦ What is the best schedule?



35

Setting up a plan for architecture activities

♦ Who is involved?
♦ What are their roles and responsibilities?
♦ Who makes what decisions and how?
♦ How to report and escalate?



36

Setting up a plan for architecture activities

♦ What were the models we used for our “guestimates”?
♦ What were the assumptions and parameters used?
♦ What are “sensitivity points” for the estimations?



37

Setting up a plan for architecture activities

♦ When to re-plan or re-estimate?
• How to measure and track the “estimation sensitivities”?

♦ When to plan what in detail?
♦ How to manage change?
♦ How to control quality?



38

Setting up a plan for architecture activities

♦ Document it
♦ Communicate it
♦ Get support and commitment for it
♦ Maintain it



39

Ways to prevent incompleteness problems

Good practices to decide what has to be done:
♦ Regular “quick scans” on completeness
♦ Explicit reviews, involving the stakeholders
♦ Clear boundaries for the architect’s tasks
Good practices to ensure that it is done:
♦ A plan
♦ A delegation structure
♦ Explicit risk management



40

A delegation structure

How to perform a lot of work in a limited lead-time?
Work concurrently!

♦ Architecture roles on several levels
• Higher levels can delegate to lower levels
• In most cases along software aggregation levels

– “Subsystem architects” or “cluster architects”
• Sometimes different:

– Scenarios / functions
– Qualities

♦ Means more planning / organization / management 
effort!



41

Ways to prevent incompleteness problems

Good practices to decide what has to be done:
♦ Regular “quick scans” on completeness
♦ Explicit reviews, involving the stakeholders
♦ Clear boundaries for the architect’s tasks
Good practices to ensure that it is done:
♦ A plan
♦ A delegation structure
♦ Explicit risk management



42

Explicit risk management

♦ Risks often known by architects, but possible effects 
are hardly communicated
• Only cause is communicated
• Assumption at architects is that possible effects are 

known
♦ This leads to miscalculations of project manager

• Risk is not managed
• No commitment to provide extra time/resources
• This leads to an incomplete architecture

♦ Architects often have difficulty to translate design 
flaws into concrete effects



43

Explicit risk management

♦ Create an explicit risk list
♦ Document the effects of each risk, in the frame-

of-reference of the stakeholders
• Show what will happen, not what is wrong
• If possible, quantify the effects 

– back-of-envelope calculation is often better than 
nothing

♦ List the preventive and corrective actions
• If possible, quantify these also! 

– back-of-envelope calculation is often better than 
nothing

♦ Maintain this list and use it in your reports
♦ Get the time and resources needed to tackle 

these risks



44

Propositions

1. Most software consists of two parts:
• A part that was designed by the architects
• A part that should have been designed by the architects
The latter part often leads to the biggest problems..

2. “Completeness” has a different meaning for every system, but the 
practices to prevent incompleteness are very similar


