PHILIPS

Making Architectures Future-Proof Using Scenarios

Pierre America Philips Research, Eindhoven, The Netherlands

Problem: Evolution of Long-Living Architectures

Given:

- Successful system architectures enjoy a long life (often more than 10 years). Reason: Implementing a new architecture is very expensive.
- The requirements on the systems can change drastically.
- Therefore the architecture must evolve to meet them.

Examples:

Problem:

• How to assess and improve architecture evolvability?

Case Study: Cardiac Catheterization Lab

- In this cathlab, a patient with a stenosis (narrowing) in his artery is treated using a catheter inserted into a blood vessel.
- X-ray imaging makes the blood vessels and catheter visible.
- Philips Medical Systems is market leader for these cardiovascular X-ray systems.
- New technology: 3D Rotational Angiography (3DRA)

Strategic Scenarios

We don't know the future, so we consider several possibilities.

From Strategic to Architecture Scenarios

Architectural Views

Artifacts per View

with	wi	th	with	Artifacts
VariationVariation ModelValueValueUpropositionSoCustomerO	A Function ariation Model User cenarios	onalit iation Mode	Variation Mod System decomposition	del riation Model echnology napping Mechanisms
driversreCustomerSicontextWCompetitor /Competitor /	equirements system context Vorkflow ontext	Feature / value matrix	Collaboration Information models	s Conventions Collaboration estimations Supplier

Variation Modeling

Goal: Overview of differences and commonalities among architectural scenarios

- Structurally explore the variation space in the various views, and relationships between them
- Guide and document choices that are made and options that are discarded
- Enhance communication and raise awareness about these choices among the architecture's stakeholders

Functional Variation Model

Conceptual Variation Model

Realization Variation Model

Extended Functional Variation Model

Customer Variation Model

Scenarios

- For each of the CAFCR views we can define a number of different *scenarios*.
- Each scenario consists of a consistent set of choices for the variation points.
- Of course the choices should preferably be reasonable and interesting
- The total number of scenarios should be limited, around 5 per view.

Example: Functional Scenario

Scenario Correspondence Across Views

 Two scenarios in different views are said to correspond to each other if their sets of choices match in terms of the overlap in the variation models

PHILIPS

Example: Corresponding Conceptual Scenario

Scenarios Across Views

Customer	stomer Application Func		Conceptual	Realization	
	Minimal	Minimal	-	-	
Academic	Data	Data	DM Integr.	Multiboot	
	Presentatio	Presentatio	HW switch	wathost	
Production	n & Control	n & Control	Alt-Tab	Cohoct	
	Workflow	Workflow	Coordinator	CONOSI	
	Full	Full	Luxury	TFT	

Evaluating Quality Aspects

- Define a number of quality aspects; do this precisely and, if possible, quantitatively
- For each scenario, evaluate the quality aspects by any appropriate method
 - Expert judgement
 - Modeling
 - Simulation

Case Study: Usability in the Cathlab

Usability Objective	Usability Factor	Metrics			
	(Specific)	(Quantitative)			
		Number of Cardiologists			
	Personnel involved	Number of Nurses			
Efficiency		Number of Technicians			
Enciency		Number of walks			
	Number of atomic actions	Number of sterilizations			
		Number of buttons			
	Error rato	Image quality			
Effectiveness		Number of buttons			
	Accuracy of the	Image quality			
	Dationt comfort	Intervention duration			
		Physical support			
Satisfaction		X-ray Exposure Time			
	Invasiveness	Fluoroscopy Time			
		Contrast agent amount			

Usability Evaluation in Application View

	Minimal	Data	Presentation & Control	Workflow	Full		
Cathlab description							
Prepare MR study					L.		
Procedure logging							
Navigate catheter			-	-	-		
Do exposure			_				
Compare to MR study		_					
Acquire 3DRA							
View DRA							
View 3DRA							
Do image analysis		_				Red	- Integration levels
Do hemo measurement						Yellow	- PACS integration
Select stent		-				Blue	- 3DRA integration
Place stent						Green	 - Hemo integration
Make/review exposure							
Finalize							

Usability Values per Scene

	Scen e 1	Scen e 2	Scen e 3	Scen e 4	Scen e 5	Scen e 6	Scen e 7	Scen e 8	Scen e 9	Scen e 10	Scen e 11	Scen e 12	Scen e 13	Scen e 14	Scen e 15
walks	1	0	0	0	0	1	0	0	1	1	0	0	0	0	0
resteri	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
pers	0	1	1	1	1	2	1	1	3	3	2	1	1	1	2
fluo	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
angio	0	0	0	0	400s	0	200s	0	0	0	0	0	0	200s	0
exprep	0	0	0	0	2220s	0	1020s	0	0	0	0	0	0	1120s	0
exdur	0	0	0	0	12s	0	6s	0	0	0	0	0	0	6s	0
expos	0	0	0	0	2	0	1	0	0	0	0	0	0	1	0

Aggregated Usability Results

Determining and Assessment Views

• Determining view:

The view where the architectural *decisions* are made that determine the quality of the system.

• Assessment view:

The view where the *resulting* system qualities can be assessed.

Examples of Determining and Assessment Views

Quality aspect	Determining view	Assessment view
Usability	Functional	Application
Performance	Conceptual, Realization	Application
Salability	Functional	Functional, Customer
Development cost	Conceptual	Conceptual, Realization
Usage hazards	Conceptual, Realization	Application
Development risk	Conceptual	Conceptual

Method Overview

Strategic Scenarios

Integral Architecture

Conclusions

Method ingredients:

- Cross-view variation modeling
- Architectural scenarios per view
- Quantitative analysis of quality aspects
- This approach helps improve futureproofness beyond roadmapping
- It requires a mature organization, where roadmapping is already well established.