Designing the Designer educating system/software

architects

Kees van Overveld TU/e (SAI); Philips Research 5 februari 2002

Contents

- 1. Research $\leftarrow \rightarrow$ Design
- 2. Methodology, culture and tradition of research
- 3. The educational system at universities
- 4. A conflict
- 5. An even bigger conflict
- 6. Standard solutions and why they don't work
- 7. Weird idea nr. 1
- 8. Weird idea nr. 2
- 9. Conclusions

Design and Research

Type of questions: Starts from: Asked: Searches for: Thinking terms: Thinking steps: Role of a model: Aim: Progress: Role model: Mutual relation: Methodology

why? empiric findings theory (explanation) single possible truth *invariants* logic $\leftarrow \rightarrow$ truths isolation (leave out a.m.a.p.) production of knowledge discovery **Finstein** application=black box extension \rightarrow insight

researcher

designer What-if? set of requirements artefact one of many possible realities variants inspiration $\leftarrow \rightarrow$ relevance integration (take into account a.m.a.p.) solve social problems decision Edison underlying law=black box intention \rightarrow extension

(Technical, higher) education = driven by scientific research Scientific research = the production of true knowledge Knowledge = the perception of (one's own) thoughts

Technical, higher) education = driven by scientific research Scientific research = the production of true knowledge

Knowledge = the perception of (one's own) thoughts

Knowledge = the perception of (one's own) thoughts

Technical, higher) education = driven by scientific research

Scientific research = the production of true knowledge

the observe-model-experiment-falsify

cycle of science differ significantly!

because:

different intention

designed artefact ≠ experimental set up

no reproduction under controlled circumstances

no systematic variation of 1 variable at a time

preliminary conclusion:

- university system is based on empiric and formal forms of thinking
- this gives rise to academic practice incl. experimental falsification
- 'value' and 'choice'-thinking forms fall outside this regime
- therefore, universitary education may be inadequate for designers

We analyse unversity culture on the dimensions of

- objectivity
- profoundness
- academic professionality
- involvement

using the method of kernel quadrants

We analyse unversity culture on the dimensions of

- objectivity
- profoundness
- academic professionality
- involvement

*carrier of culture

*gauge for scientific standards *inert, self-sufficient *ivory tower

*'academic' in negative sense

We analyse unversity culture on the dimensions of

- objectivity
- profoundness
- academic professionality
- involvement

*distinction and identity *long term thinking *continuity *risk of hobby-horses

*no attention for difficult but relevant problems

We analyse unversity culture on the dimensions of

- objectivity
- profoundness
- academic professionality
- involvement

*know-how (=prestige)*indispensable as expert*required for complex tasks

*knows everything about nothing & v.v.

*lacks context sensibility

*knowledge push ↔ of problem pull

*information-on-demand

We analyse unversity culture on the dimensions of

- objectivity
- profoundness
- academic professionality
- involvement

Kees van Overveld

We analysed unversity culture on the dimensions of

- objectivity: necessary but not sufficient
- profoundness: reality is often too complex
- academic professionality: different criteria apply in the outside world
- involvement: too much involvement may conflict with university's core values

A conflict

Designing falls outside the university's core values for

- historical reasons
- methodological reasons
- reasons of quality assessment
- cultural reasons

Innovative technologic design requires a level of technologic sophistication that is only found in university

An even bigger conflict: the case of software

software design is particularly nasty, because:

- possible to fake design
- abstraction paradox
- non-linear relation between design decision and consequence
- non-testability
- high pace of innovation
- large contextual impact

(only comparable with bio-technological design)

Standard solutions and why they don't work

1. the university should change its basic attitude:

- it can't
- it won't
- it shouldn't
- it would take too long
- it escapes control

Standard solutions and why they don't work

2. we need a new type of university focuses on design:

- no operational quality criteria available that substitute for 'scientific-ness'
- can't avoid competition with regular universities

Standard solutions and why they don't work

- 3. curriculum in existing university should adjust as cf. Gerrit Muller c.a.: more attention for contextual issues of design
 - more context issues means less room for technical topics
 - trend conflict:
 - technology gets *increasingly* difficult
 - (prospect) students don't get smarter
 - spend less time in technology topics?
 - existential discussions within university (see Meijer-Meijers discussion)
 - would students be motivated?

Weird ideas

analogy:

in late 1970-ies:

- advent of process-thinking
- new actors (project manager, process controller)

in early 2000-ies:

- advent of design-thinking
- new actors (rubber duck, devil's advocate)

formal responsiblities:	identify rationale for 'every' decision; make designers suggest alternatives
tasks:	slow down project team members
methods	systematic stupidity
type of questions:	'why' and 'how else'
education, background:	philosophy
main involvement:	structure design & detailing

the Devil's Advocate

formal responsiblities: none tasks: tease architect invent fail-scenarios methods type of questions: 'why not ...' education, background: police academy, insurance business main involvement: requirement engineering

Conclusions

- 1. designing is fundamentally different from research
- 2. universities originate from te research paradigm
- advanced knowledge is an essential ingredient in design, so universities should continue to do what they are good at
- 4. too much & too soon focusing on design in technical education can dilute technical contents:
 - won't happen
 - shouldn't happen
- 5. in stead, define new process-related roles in design teams (cf. project mgmt in 80-ies)