
9/30/2005

1

Component Based Production of
Software

An architectural choice
HvLeunen

9/30/2005

2

Headlines

! Exploits the synergy of mixing open and
closed technologies

! Enables a new open market
! Solves the upcoming HR dilemma
! Effectively hides IP
! Enables robust products
! Gives all parties an equal chance

9/30/2005

3

Aim

! Establish an open market for packages of
components

! The packages will contain software
components

! The packages may also contain hardware
components or IP-blocks

! The components in the package together
constitute a coherent service

9/30/2005

4

Strategy

The synergy obtained by allowing an integrated
design and build environment to interact with

a series of publicly accessible repositories
is used to establish the

ultimate in reuse and in manageability
of the software generation process

9/30/2005

5

Consequence

! Without programming, an architect can
construct a working and testable prototype
" That incorporates a tailored supporting

infrastructure
" That uses available components
" That uses skeleton components that are

designed by the architect
" That uses skeleton components, which are

retrieved from one or more repositories

9/30/2005

6

Stepwise development

! Starting from an early prototype the
product evolves by
Filling the designed skeletons with active

code
$This is done by domain expert programmers

Replacing retrieved skeleton components by
active equivalents that are obtained, e.g. via
e-commerce transactions with the site where
the corresponding repository is located

9/30/2005

7

Why this strategy

The market pressure

9/30/2005

8

Design Productivity Gap

380K

603K

957K

1,520K

2,410K

3,830K

Lo
g

Sc
al

e

Gates/cm2 Moore’s Law
(59% CAGR)

Software Design Productivity
(≈ 10 – 15% CAGR)

productivity
gap

9/30/2005

9

Increasing Hiring +
Cost dilemma

1990 2010

Resource limited by market
,availability of experts

SW Resource need

HR
gap

9/30/2005

10

Growth in digital market
delayed by bugs

Pe
ne

tr
at

io
n

of
 D

ig
ita

l
B

ro
ad

ca
st

in
g

Te
ch

no
lo

gy

‘’Wait & see’’ by end-users

Lost re
venues due to

 de-hyping

2001 2002 2003 2004

$’s
gap

Potential
cure

9/30/2005

11

Recall and download costs
C

os
ts

 in
 ‘’

af
te

r m
ar

ke
t’’

2001 2002 2003 2004

revenues

Costs

Gap

9/30/2005

12

Why this strategy ?
The more technical reasons

! Manageability orders of magnitude better
than conventional ways

! r·n·(n-1) rule

! Optimal reusability
! Well defined modules

! Secure IP hiding + publishable interfacing
! Architecture bipartition

! Optimal configurability
! Lego-like & tool supported

! Vast reduction of time to market
! Vastly reduced project risk

The E = m ·c2 of
component
technology

Explicit
exposure of
metadata &

meta-models

9/30/2005

13

Modularization

Monolith

Properties

Behavior

Relations

Communication

Encapsulation

Coordination

Modeling elements

System Components

Indivisible
component

Indivisible

Services

9/30/2005

14

Speaker Notes

A system can be componentized by splitting it into a series of
components that are as independent from each other as is
feasible. In this process the central services are set aside as a
special category. On their turn these components can be split
in smaller components. This process continues until the
components can no longer be split into smaller components.
Still these components can be subdivided into a series of
modeling elements. These are:
properties, relations, aspects of behavior, communication,
encapsulation and coordination.
Coordination takes place between components and between
components and the central services of the system

9/30/2005

15

Modeling Elements

Attributes

Trigger

Protocol

Operations

Envelop

Properties

Aspects of behavior

Relations

Communication

Encapsulation

Coordination Task management
& synchronization

9/30/2005

16

Speaker Notes

Where painters use colors and forms to generate an abstraction of their
subject, programmers will use properties, aspects of behavior, relations,
communication, encapsulation and coordination as ingredients for their
model
The original, more natural modeling ingredients can be converted in a new
set of mutually independent categories of modeling ingredients.
Operations are independent of the state of the individual. This state is
represented by a set of attributes. Communication is a combination of three
independent modeling elements: Attributes, protocols and the trigger that is
caused at the receiver side. The communication path is a set of attributes,
as is the transferred message or command.
The burden of keeping architectural views in concordance is minimal when
the views are made as independent from each other as is reasonably
possible. Describing the model in terms of independent modeling elements
helps in keeping views independent.

9/30/2005

17

Modeling => Implementation in SW

Attributes

Trigger

Protocol

Operations

Datastructs

Routines

Documents

Call

Envelop ADT

(RTKOS)

Properties

Aspects of behavior

Relations

Communication

Encapsulation

Coordination Task management
& synchronization

9/30/2005

18

Speaker Notes

The original, more natural modeling ingredients can be converted in
a new set of mutually independent categories of modeling
ingredients. Programmers have straightforward implementations for
each of these new ingredients.
Attributes are implemented in fields of datastructures, which in their
turn are reserved areas in the available memory space.
Operations are independent of the state of the individual. This state
is represented by a set of attributes. The routines implementing the
operations use a reference to this set of attributes as an input
parameter. In this way they themselves become independent of that
state.

9/30/2005

19

Speaker Notes

Protocols are defined by the language, which is used to program the
operations and are further specified by the function prototypes of
these routines.
A trigger represents the event of calling a operation. The attributes
contained in the message are added as parameters to the call.
Encapsulation is achieved by applying abstract data types (ADT’s).
Coordination is not supported directly by third generation languages.
Instead it is implemented using services from a real time kernel
operating system (RTKOS)

9/30/2005

20

Wider Scope of Elements

Attributes

Trigger

Protocol

Operations

Envelop

Properties

Aspects of behavior

Relations

Communication

Encapsulation

Coordination

C

C+

Task management
& synchronization

I C&

I C&

I C&

I C&

R

9/30/2005

21

Speaker Notes

Where painters use colors and forms to generate an abstraction of
their subject, programmers will use properties, aspects of behavior,
relations, communication, encapsulation and coordination as
ingredients for their model
The original, more natural modeling ingredients can be converted in
a new set of mutually independent categories of modeling
ingredients. Programmers have straightforward implementations for
each of these new ingredients.
Some modeling elements have a wide scope. E.g. the scope of
operations covers the class of items that share the operation as part
of their behavior. In order to prevent Babylonic confusion the protocol
used must have the widest possible scope. Ideally only a single
scalable communication protocol should be used.

9/30/2005

22

Metamodeling Elements

Type definition

Type

Interface type

Class, attribute, parameter, operation

Reference to type definition

Describes a coherent set of operations

Function prototype Special kind of type definition

Metamodeling elements will have the highest chance to be reused

Meta modeling elements describe modeling elements

R

9/30/2005

23

Speaker Notes

When a class of similar models is described precisely, then a
definition of the corresponding type is given.
A type associates a model with its type definition.
An interface type is a description of part of a model. It can be
specified and referenced independent of its encapsulating
model.
A function prototype is a description of part of a method. It
can be specified independent of its encapsulating model.

9/30/2005

24

Best practices

Architecture scope

rules

methods

requirements

view target

Model

Creative and
combinatorial
talents of the

architect

9/30/2005

25

Speaker Notes

An architecture is a set of views that are based on
established rules and methods and on the customers
requirements. The views represent different abstractions of
the current model. The model itself is an abstraction or a
partial realization of the required target product.

9/30/2005

26

model

model

model

model

model

model

Architecture dynamics

View1.0View1.0

View1.1View1.1

View1.2
target

9/30/2005

27

Speaker Notes

An architecture is a set of views that changes dynamically
with the progress of the underlying project. The views
represent different abstractions of the current model.

9/30/2005

28

Architecture Split up

Passive
relational

Active

Simple,
publishable,

specifies usage

Complex,
contains IP,

specifies
co-ordination

View1.2

Services

9/30/2005

29

Speaker Notes

An architecture is a set of views that changes dynamically with the progress
of the underlying project.
The set of views can be divided into two not completely orthogonal sub-
sets:

A passive relational architecture part,
the dynamic architecture

Apart from the local actors also some centralized or distributed services are
part of the system. These services may be present in the surround or they
may be created during system generation.
The passive relational architecture contains information that is publishable.
Specifying the passive relational architecture and specifying the necessary
infrastructural support is orders of magnitude less complex than fully
specifying the dynamic architecture.

9/30/2005

30

Modeling => Division

Attributes

Trigger

Protocol

Operations

Envelop

Properties

Aspects of behavior

Relations

Communication

Encapsulation

Coordination

Passive

Active

Task management
& synchronization

9/30/2005

31

Speaker Notes

Where painters use colors and forms to generate an
abstraction of their subject, programmers will use properties,
aspects of behavior, relations, communication, encapsulation
and coordination as ingredients for their model
The original, more natural modeling ingredients can be
converted in a new set of mutually independent categories of
modeling ingredients.
These independent modeling elements can be grouped into
two categories. The first category represents the passive
relational part of the architecture. The second category
represents the active part of the architecture.

9/30/2005

32

Exploiting the Division

Passive
relational

Active

Skeleton

Incremental
steps

Implement

Repository
Repository

Open-Repository

View1.2

Interactive
prototyping

target

Publishable,
specifies

usage
Services

IP-Repository

9/30/2005

33

Speaker Notes

The passive relational architecture contains information that is
publishable. It contains enough information to enable the
generation of a skeleton prototype of the target in which the
relational architecture can be fully tested. This skeleton prototype
contains most of the supporting infrastructure. The generated or
used infrastructure is fully functional. The other part is just a
skeleton but it can be converted gradually and incrementally into a
fully functional target product that fulfills all requirements.
Specifying the passive relational architecture and specifying the
necessary infrastructural support is orders of magnitude less
complex than fully specifying the dynamic architecture. Thus
creating a skeleton on the basis of a passive relational architecture
can give a project a head start where many of the risks can be
estimated before the real and elaborate work starts.

9/30/2005

34

Speaker Notes

It is possible to extend the skeleton in incremental steps until a fully
functional target system is reached. In each of these steps a
testable prototype supports detailed interaction between the
requirements specification and the corresponding realization of
these details in the target system.
Repositories exist in several categories. Here the open-repository
is used to serve an open market. The IP-repository is used to
exchange IP in a closed community.

9/30/2005

35

Enabling Reuse

! The choice of communication protocols
must be limited to a single scalable
protocol

! Because:
– All individual components must be able to

communicate with each other
– Even the simplest component must

implement all existing protocols

R

9/30/2005

36

Speaker Notes

If several different communication protocols are accepted, then extra
resources must be spent to protocol conversion and to manage
groups of components that can handle a chosen protocol.
If a single scalable protocol is supported then the component may
negotiate its capabilities with its clients or servers, because it knows
what scale of protocol it can handle. The corresponding resource
needs are so small that it becomes acceptable for even the simplest
component.
Scalable protocol means:

Direct link at the lowest scale
Dynamic link and/or script interpretation at medium scale
Distributed access at the highest scale

9/30/2005

37

Reuse Promotion

! Reuse must be promoted by publishing design
elements (type definitions, interface definitions,
component descriptions) on repositories.

! If this is done in machine retrievable way then an
appropriate tool can construct testable skeletons
of software modules from the retrieved data.

! The skeletons can be integrated with other
components in a testable prototype or
simulation.

R

9/30/2005

38

Speaker Notes

Repositories can play a role equivalent to the current role of
module handbooks. Besides of that they pose the possibility to
offer their information in a machine retrievable way. This again
opens the possibility to automatically create skeletons from the
retrieved data. Such skeletons can then be applied in running
and testable prototypes or simulations of the target product.

9/30/2005

39

Reuse Promoting Repositories

Type definitions
Interface specifications
Component descriptions

Design & build
group

1

Design & build
group

2

Design & build
group

3

Design & build
group

4

Design & build
group

5

<XMI compatible>

R

9/30/2005

40

Speaker Notes

A series generally accessible sites (repositories) must support reuse
of existing types, interfaces and components
Design & build groups may inquire the sites for type definitions and
interface definitions
The site might also specify the (passive relational) architectural
design and provide descriptions of complete packages of software
components and may provide information about the the suppliers of
these components.
Tools may use the information retrieved from a repository for the
creation of skeletons of modeling blocks. These skeleton blocks may
range from skeletons of interfaces to skeletons of complete
components. The information suffices to build a working and testable
prototype of the target application. This prototype can be converted
in incremental steps into a fully functional system.

9/30/2005

41

Repositories

! Support archival and retrieval of XML
based scripts that contain design elements.

! Represent the equivalent of module
handbooks.

! The XMI standard guards exchangeability
of data between disparate tools.

! Repositories are essential for creating and
supporting an open market.

R

9/30/2005

42

Speaker Notes

Repositories can play a role equivalent to the current role of module
handbooks. Besides of that they pose the possibility to offer their
information in a machine retrievable way. This again opens the
possibility to automatically create skeletons from the retrieved data.
Such skeletons can then be applied in running and testable
prototypes of the target product.
The XMI standard proposed by the OMG secures easy and reliable
exchange of the design elements that are archived on the repository.
Together this may cause a busy open market for software
components. The same approach can be used both for hardware
and software components. Brought together it will enable a market
for hybrid components.

9/30/2005

43

eXtensible Markup Language

! Derivative of SGML
! More flexible than HTML
! Not restricted to Internet
! Plain text based protocol
! Prepared by ISO W3C

– http://www.w3.org
! Accepted by ISO in February 1998
! Empowered by a series of associated standards
! Most of them are still in preparation

XML

9/30/2005

44

Speaker Notes

XML is a derivative of SGML. SGML is used for example to design
and print handbooks. HTML is also a derivative of SGML but is is
too limited for the current for flexibility in data exchange via web
pages.
Its use is not restricted to the Internet. Many tools already use XML
files for the exchange of structured information with other tools.
XML is empowered by a series of associated standard file types and
language definitions. Most of these standards are still in preparation.
Currently the structure of XML files is defined using DTD files. DTD
files are an inheritance of SGML. In the future schema files will be
used. Schema files offer a much more detailed definition of the
structure of an XML file. Apart from that schema files themselves are
XML files.

9/30/2005

45

XML As a Container

<village name=”Asten”>
<place name=”Market”>

<artifact> kiosk </artifact>
</place>
<street name=”Church alley” quarter=”12”>

<house number=”2”> apartment </house>
<house number=”4”> cottage </house>
<shop number=”6”> grocery </shop>
<parkingPlace name=”Corner parking"/>

</street>
</village>

opening tag
attribute

ContentContent
village
content

empty
element

closing tag

MarkupMarkupmarkup

XML

9/30/2005

46

Speaker Notes

The markup in XML files consists of tags. These tags can be freely
chosen. However the XML file must be well formed. With non-empty
elements each opening tag must be followed by a closing tag. The
tags may incorporate one or more attributes. The tags and the
structure of their content may, but must not be defined in a
corresponding DTD or schema file.

Tags belong to a namespace. This may be the default namespace
as in the example or it may be a special namespace:
<author name=“Hans van Leunen”>
<title>Ir</title>
<paper:title>Architecture of component-based

systems</paper:title>
</author>

9/30/2005

47

Associated File Types

Data Type Definition

eXtensible Style Language

Schema

eXtensible Query Language

eXtensible Link Language

eXtensible Pointer Language

Namespace

Data dictionariesData Dictionaries HyperlinksHyper-linking

Web Rendering
Searching and
Categorizing

XML

Inheritance

???
???

???

XML

Container

9/30/2005

48

Speaker Notes

The standards that are associated with the XML standard
make XML files into containers that have much in common
with databases.
DTD and schema files play the role of data dictionaries. XQL
files enable searching through XML documents and
categorizing of sections of XML documents. XSL files enable
the rendering of the data contained in XML files on web
pages. XLL and XPL help interlinking XML documents and
sections of XML documents. The namespace standard
enables inheritance between data dictionary files.
The list of associated standards will not stop here. Many other
associated standards are already proposed.

9/30/2005

49

Comparison

! Databases
– Optimized for archival and retrieval of series of

similar types

! XML
– Optimized for archival, retrieval and exchange

of hierarchically structured data

XML

9/30/2005

50

Speaker Notes

XML files have much in common with databases. Apart from
that there are also important differences. The main difference
is that databases are much better suited for handling data that
occur in large series of similar types, while XML is much
better suited to handle hierarchically structured data.
Another difference is that XML is well suited for streaming
data between applications.

9/30/2005

51

XML Metadata Interchange

! XMI is a standard that is prepared by the
Object Management Group (OMG)
– http://www.omg.org

! XMI covers:
– Meta-meta-modeling ⇒ XMI script
– Meta-modeling ⇒ MOF script
– Modeling ⇒ UML script

XMI

9/30/2005

52

Speaker Notes

The Object Management Group has published its second
version of the proposal for the XMI standard.
The XMI standard describes how design information must be
stored, retrieved and interchanged.
For that reason the OMG publishes DTD files for the XML
scripts that must be used to describe design elements in the
Meta Object Facility (MOF) and in the Unified Modeling
Language (UML).
It also specifies how the corresponding XML files must be
generated.

9/30/2005

53

XMI

! XMI uses XML as scripting language
! The Meta Object Facility (MOF) is used for

specifying meta-models, such as IDL files
! Unified Modeling Language (UML) is used

for designing systems
! XMI specifies DTD files for defining meta-

model and model data exchange scripts

XMI

9/30/2005

54

Speaker Notes

The Object Management Group has published its second
version of the proposal for the XMI standard.
The XMI standard describes how design information must be
stored, retrieved and interchanged.
For that reason the OMG publishes DTD files for the XML
scripts that must be used to describe design elements in the
Meta Object Facility (MOF) and in the Unified Modeling
Language (UML).
It also specifies how the corresponding XML files must be
generated.

9/30/2005

55

Relational Complexity in
Monolithic System or Part

n(n-1)/2 potential relations n = Nr of related items

9/30/2005

56

Speaker Notes

Let a system be implemented by n operations, which together work on m modelling
elements. r of the controlled modelling elements are relations. A novice that has to
understand the implementation is confronted with ½ × n × (n-1) potential relations
between the operations and with n × m potential relations between the operations and
the controlled modelling elements. Relations may differ in character. Say that there
exist t different types of relations. Assuming that the modelling elements that
represent relations do not describe relations between relations, the potential relational
complexity, to which the novice is confronted, equals:
(½ × n × (n-1)+ n × m + r) × t

The same complexity is encountered by reverse engineering tools or when a bug has
to be resolved that cannot be directly related to a single design element. With other
words: potential relational complexity is a good characteristic for the design related
difficulties that can be encountered in managing the current project.

9/30/2005

57

In numbers
! 100 items ⇒ 99 • 100 potential relations
! 1000 items ⇒ 999 • 1000 potential relations

! 10 modules containing 100 items ⇒
maximally 99 • 100 potential relations
inside a module plus 9 • 10 relations
between modules.

! Nobody sees more than 9990 relations!!!

9/30/2005

58

Impact

! The reduction of the potential relational
complexity has the largest impact when systems
are completely built as component based
systems

! Currently all systems that apply software
components apply components in a relatively
small subsystem

! This is why nobody has got a proper feel for the
real power of software component technology

9/30/2005

59

Environment

Complexity in Component Based System

Easily two orders of magnitude better than monolithic case

9/30/2005

60

A component typically contains one up to five interfaces and each interface
contains typically between two and ten operations. Thus a component
contains typically between ten and fifty operations and it has between two
and twenty attributes. Typically about twenty different types are used. So
internally the potential relational complexity of a component with
(n = 25; m = 10; r = 4; t = 20) ⇒ (25/2*(25-1)+25*10+4)*20 = 11080
is of the order of ~104. The potential relational complexity for the system
integrator that configures the system out of 10 reusable components with
(n = 3 × 10; m = 0; r = 40; t = 25) ⇒ (30/2*(30-1)+30*0+40)*25 = 11875
is of the order of ~104. An equivalent monolithic design would have a
potential relational complexity of ~106. A system consisting of one hundred
reused components would have a relational complexity given by:
~(n = 3 × 100; m = 0; r = 400; t = 25) ⇒ ~(300/2*(300-1)+300*0+400)*25 =
1131250.

Speaker Notes

9/30/2005

61

This is in the order of ~106. A corresponding design without components would have
a relational complexity of ~108. Together the reused components have a potential
relational complexity of the order of ~106. However, since the creation of the
components will be delegated to different design groups, a single developer never
encounters that complexity. This proves that the component oriented approach has a
very significant beneficial effect on the potential relational complexity.
Layering also has a beneficial influence on relational complexity. For example a four
layered system has a potential relational complexity that is 30% better than a
monolithic system. This is still far from what can be reached with component
technology.
Depending on the efficiency at which encapsulation is pursued and on the depth of
the inheritance the potential relational complexity of an object oriented class library
can range from worse than an equivalent monolithic system to as good as an
component based design.
Potential relational complexity, or better its antonym relational clarity, has a direct
correspondence with the manageability of the design.

Speaker Notes

9/30/2005

62

If Reuse Must Be Optimized
! Analyze the complete application field
! Bring order in the models found there
! Find classes of equivalent functionality
! Exploit class wide aspects
! Exploit the ranking of complexity
! Group methods into intuitive interfaces
! Encapsulate instances
! Hide internals

9/30/2005

63

Speaker Notes

A procedure is presented according to which reuse of efforts
in the software design and build process can be optimized.
Many of the steps listed here on itself already provide some
sub-optimization.
Driving steps too far may hamper the installment of other
steps. For example inheritance exploits the ranking of
complexity. Driving it too far may hamper proper
encapsulation.

9/30/2005

64

Wider Scope of Elements

Attributes

Trigger

Protocol

Operations

Envelop

Properties

Aspects of behavior

Relations

Communication

Encapsulation

Coordination

C

C+

Task management
& synchronization

I C&

I C&

I C&

I C&

R

9/30/2005

65

Speaker Notes

Where painters use colors and forms to generate an abstraction of
their subject, programmers will use properties, aspects of behavior,
relations, communication, encapsulation and coordination as
ingredients for their model
The original, more natural modeling ingredients can be converted
in a new set of mutually independent categories of modeling
ingredients. Programmers have straightforward implementations for
each of these new ingredients.
Some modeling elements have a wide scope. E.g. the scope of
operations covers the class of items that share the operation as
part of their behavior. In order to prevent Babylonic confusion the
protocol used must have the widest possible scope. Ideally only a
single scalable communication protocol should be used.

9/30/2005

66

n
1

Redirected

Class data

Object
data

ADT→object Orientation

Attribute

Attribute

Routine 1

Routine 2

Routine 4

Routine 5

Routine 3

Routine 6

Class ref

Attribute

Attribute

Attribute

Individual

Environment

Routine 6
Routine 6a

Routine 3
Routine 3a

Object
data

Class data

Method

Method

Routine 7

Routine 8

Attribute

Attribute

Class wide

Method

Method

Method

Method

Method

Method

9/30/2005

67

Speaker Notes

The individual and the class to which it belongs are both represented by a
set of attributes that are contained in a datastructure. The datastructure of
the individual contains a reference to its class. The class datastructure
contains a list of references to routines that implement the methods.
Together they form a cluster that represents the complete functionality of
the individual.
Inheritance is implemented by extending the tables of attributes or routine
references contained in the datastructures and by redirecting the
references to the routines that implement the behavior to routines that are
more sophisticated or that use the extra attributes contained in the
extended datastructures.
This shows how child classes can be derived from parent classes. Multiple
inheritance is implemented by exploiting the possibility to aggregate
instances of other classes into an enveloping class and then exporting the
access to the functionality of the contained object. (Multiple inheritance is
not shown here.)

9/30/2005

68

base

base

Class Libraries

Class libraries are structured sets of class modules
Class modules contain differences with respect to parent class

Base class modules contain the full class

9/30/2005

69

Speaker Notes

Class libraries are ordered sets of class modules. Class
modules contain the differences with respect to their parent
class. The modules of the top classes in the hierarchy
contain the complete class. If inheritance is confined to
single inheritance, the library will have a hierarchical
structure. Otherwise a network structure results.

9/30/2005

70

Application children

Shell

library

Applications From Class
Libraries

child unchanged

library

unused

9/30/2005

71

Speaker Notes

When generating applications from a class library then new classes are derived
from classes present in the library, even if only a slight change to that class would
be required. This is done in order to prevent that the existing class library gets
disturbed. Only when a class can be used unchanged it may be added directly to
the application.
Usually not all of the class library is used. Often there are no efficient cleanup tools
available that remove all unnecessary code. Usually the linker removes unused
classes but cannot remove unused class members. Due to the inheritance relations
it is difficult to componentize the class library such that the amount of unnecessary
code is minimized.
In order to be able to work efficiently with a class library, a programmer must have
the the source code of the library at his disposal. Without such access he cannot
optimize reuse. There is a real chance that he must completely re-implement most
of the extended methods. Also debugging may become problematic without access
to source code. Access to source code exposes all intellectual property that is
invested in a class library to the users of that library.

9/30/2005

72

Application children

Shell

Implementing Distributed Services

child unchanged

unused

services

9/30/2005

73

Speaker Notes

It feels natural to offer distributed infrastructural services by
installing them in top level classes. In that way they ripple
through all lower level classes and into all applications that
are built with that library. If use is made of these services,
then in all of these occasions interdependencies are raised.
This may render it difficult to change the implementation of
these services at a later date. In the extreme case it may
render the complete library archaic.

9/30/2005

74

Application children

Shell

libraries

Distributed Services Conflict

child unchanged

unused

services

services

9/30/2005

75

Speaker Notes

If in two or more different class libraries the infrastructural
services are implemented in different ways, while in both
cases the services are implemented in top level classes, then
sub-libraries of one of these class libraries cannot be
combined with other class libraries of that set.

9/30/2005

76

n
1

Redirected

Class data

Object
data

Object Orientation, Deficiencies

Attribute

Attribute

Routine 1

Routine 2

Routine 4

Routine 5

Routine 3

Routine 6

Class ref

Attribute

Attribute

Attribute

Individual

Environment

Routine 6
Routine 6a

Routine 3
Routine 3a

Object
data

Class data

Method

Method

Routine 7

Routine 8

Attribute

Attribute

Class wide

Method

Method

Method

Method

Method

Method

9/30/2005

77

Speaker Notes

Most object oriented languages are careless with
encapsulation. Often direct access to attributes is tolerated.
This inhibits establishment of uniform access and makes it
impossible to make the class instance fully responsible for its
behavior.

9/30/2005

78

Object Orientation, Deficiencies

! Most object oriented systems are sloppy
with encapsulation

! Multiple communication protocols possible
! Deep inheritance may cause unwanted

dependencies
! Distributed services appear everywhere

with their positive and with their negative
effects

9/30/2005

79

Speaker Notes

Most object oriented languages are careless with encapsulation.
Often direct access to attributes is tolerated. This inhibits
establishment of uniform access and makes it impossible to make
the class instance fully responsible for its behavior.
If multiple ways of accessing data are tolerated then this effectively
means that multiple communication protocols are supported. This
hampers proper access management.
Any service that is implemented in a top level class will ripple
through all lower level classes and will appear in all applications that
are built with that class library. This may cause unwanted
dependencies. It may render the library archaic and it may render
class libraries mutually incompatible.

9/30/2005

80

Encapsulation

Individual

(State)

Class
(Operations)

association

associationass
oc

iat
ion

Environment
Generate new

individual
Communicate with

individual

Pass call to
operation

R

ass
oc

iat
ion

9/30/2005

81

Speaker Notes

Operations are modeling elements that have a class-wide scope.
Communication has an even wider scope. Associations are used as a
communication path in order to pass messages and commands.
Attributes can be private to the individual or they have a class-wide scope
The individual encapsulates its own private state and the association with its
class. Via this relation it also encapsulates its class.
The environment has an association with the class. When the individuals can
be created dynamically, then this relation is used to command the creation of
a new instance. The creation operation returns a reference to the new
individual.
The associations of the environment to an individual are used to pass
messages and commands to that individual or its class. Each of these
associations corresponds to one of the interfaces of the individual. The
Individual passes this information to its class and adds a reference to its own
state. Dynamic instances can get a command to delete themselves.

9/30/2005

82

n
1

Redirected

Class data

Object
data

Attribute

Attribute

Routine 1

Routine 2

Routine 4

Routine 5

Routine 3

Routine 6

Class ref

Attribute

Attribute

Attribute

Individual

Environment

Routine 6
Routine 6a

Routine 3
Routine 3a

Object
data

Class data

Method

Method

Routine 7

Routine 8

Attribute

Attribute

Class wide

Method

Method

Method

Method

Method

Method

OO → Component Orientation

Environment One uniform access method

Class data

Effective IPR hiding

Class ref

Method

Method

Method

Method

Method

Method

Method

Method

9/30/2005

83

Speaker Notes

Most object oriented languages are careless with
encapsulation. Often direct access to attributes is tolerated.
This inhibits establishment of uniform access and makes it
impossible to make the class instance fully responsible for its
behavior.
Hard encapsulation may cure this flaw. Hard encapsulation
enforces a single uniform communication protocol. This
communication protocol may become scalable by extra
services that are offered by the supporting infrastructure.

9/30/2005

84

The Communication Protocol

! The choice of communication protocols
must be limited to a single scalable
protocol

! Because:
– All individual components must be able to

communicate with each other
– Even the simplest component must

implement all existing protocols

9/30/2005

85

Speaker Notes
If several different communication protocols are accepted, then extra
resources must be spent to protocol conversion and to manage
groups of components that can handle a chosen protocol.
Scalable protocol means:
! Direct link at the lowest scale
! Dynamic link and/or script interpretation at medium scale
! Distributed access at the highest scale
Both the lowest scale of communication and at least part of the the
script interpretation must be implemented by the component. Higher
level services are implemented by the supporting infrastructure. In
this way the corresponding resource needs are so small that they
become acceptable for even the simplest component.

9/30/2005

86

Object Interface (COM)

hidden

hidden
hidden
hidden
hidden

hidden

hidden

hidden

hidden

hidden

hidden

hidden

hidden QueryInterface
AddRef
Release
FuncB4
FuncB5

QueryInterface
AddRef
Release

FuncA6

FuncA4
FuncA5

Instance
data

VtblVtbl AA

VtblVtbl BB
Class dataClass data

AA
BB

hidden

IUnknown

BB

FuncB4

9/30/2005

87

Speaker Notes

COM has a particular implementation for its binary structure. The second
data structure, which represents the implementation of the class, is split into
a series of subsets, called interfaces. For each of the interfaces the first data
structure, which represents the instances of the class, contains a reference
that points to that interface. Each of the interfaces contains pointers to three
special routines:
‘QueryInterface’ supports maneuvering between interfaces.
‘AddRef’ controls access to the interface. It increases a reference counter.
‘Release’ releases the access rights claimed via the ‘Addref’ call. It
decreases the reference counter. It may delete the software component
when the counter reaches zero.
‘QueryInterface’ uses globally unique identifiers (GUID’s) to identify the
interfaces.
QueryInterface, AddRef and Release together constitute the IUnknown
interface.

9/30/2005

88

Object HWInterface (COM€)

hidden

hidden
hidden
hidden
hidden

hidden

hidden

hidden

hidden

hidden

hidden

hidden

hidden QueryInterfac
eAddRef
Release
FuncB4
FuncB5

QueryInterface
AddRef
Release

FuncA6

FuncA4
FuncA5

Instance
data

Vtbl A
Vtbl BB

Class data

AA
BB

hidden

IUnknown

BB

FuncB4

HardwareRegister

Variable

Register

Variable
Variable to register map

9/30/2005

89

Speaker Notes

Apart from software/software interfaces components may
also have have software/hardware interfaces. The interface
definition is a mapping from a software variable to the bits of
one or more hardware registers. In this mapping also the
access protocol characteristics are described.

The map specification can be used to generate low level
driver software and it can be used to generate VHDL.

The routines that are accessible via the software/software
interfaces can (if they want) access the variables that are
specified in the software/hardware interface.

9/30/2005

90

Object Streaming Interfaces
(COM€$)

hidden

hidden
hidden
hidden
hidden

hidden

hidden

hidden

hidden

hidden

hidden

hidden

hidden QueryInterfac
eAddRef
Release
FuncB4
FuncB5

QueryInterface
AddRef
Release

FuncA6

FuncA4
FuncA5

Instance
data

Vtbl A
Vtbl BB

Class dataAA
BB

hidden

IUnknown

BB

FuncB4

Hardware
Register

Variable

Register

Variable

Variable to register map

HWStream

SWStream

stream

9/30/2005

91

Speaker Notes

Apart from software/software interfaces software/hardware
interfaces components may also have have SW/SW and
SW/HW streaming interfaces.
The map specification can be used to generate low level
driver software and it can be used to generate VHDL.

The routines that are accessible via the software/software
interfaces can (if they want) access the variables that are
specified in the software/hardware interface and the
streaming interfaces.

9/30/2005

92

Component based

Registr
y Tailored

infrastructure
generated
by tools

HW

App Components can
have

SW interfaces
and HW/SW

interfaces

thread

9/30/2005

93

Speaker Notes

The open (sub-)infrastructure provides inter-communication, relation
management, memory management, task coordination and
synchronization support to the software components. A sub-infrastructure
may use and encapsulate these services from its surrounding
infrastructure.
This tailored infrastructure is generated by the integrated design and build
tool. It encapsulates the RTKOS. It is possible that the tool also generates
a tailored RTKOS as integral part of the generated supporting
infrastructure.
Both the relation manager and the task coordination makes use of a
registry. This is a database where references to classes, instances and
tasks are registered.

9/30/2005

94

Speaker Notes

The task manager creates and starts tasks after system initialization. But
tasks can also be started from running tasks. A task is started from a start
routine, which is outside of the components. A start routine is called from
the task manager (after initialization), or from a component, which is
running another task.
Components can be called from tasks running in other components or from
tasks that were running in the surrounding system.
Different tasks may start by letting their start routine call the same method
of different (static) instances of the same class of SW components. It is
also possible that a task start routine first instantiates an instance of the
SW component class and then calls one of its methods.
In embedded applications software components will have one or more
software interfaces and besides of that they also may have HW/SW
interfaces.

9/30/2005

95

No encapsulating system

Registr
y

HW

thread

Highest
manageability

Unspoiled
relational clarity

9/30/2005

96

Speaker Notes

When the set of components is served by an infrastructure
that is also constructed from components, and when that
system is not encapsulated in a non-component based
surround, then the effect of the healthy influence of
component technology on relational clarity and as a
consequence on manageability becomes most apparent.

9/30/2005

97

Exchanging Design Elements

FilterIDE

IDEIDE XMI
IDE

Other toolkits

Scratchpad

design

Project
description

control

Repository
Repository

Open Repository

XMI

XMI

publish
retrieval

Local Repository

XMIXMI merge

Project
build

9/30/2005

98

System configuration

Local store

IDE

Design
new

Reuse
existing

Complete
new
Add

infrastructure

Retrieve
skeletons

Local Repository

Retrieve
release

components

