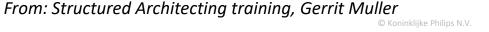


Gathering Requirements that drive Architecture decisions

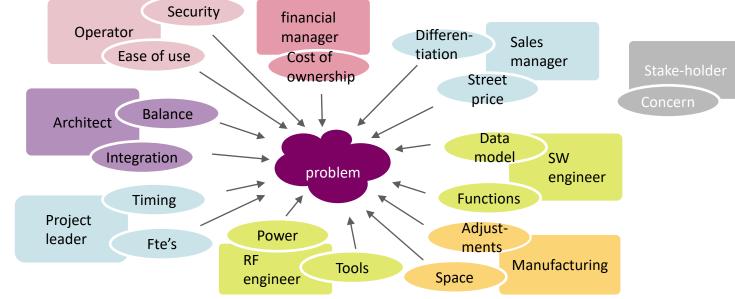
Andre Nieuwland Fellow Architect Product Platforms SASG meeting at Sioux – February 7, 2023

Gathering requirements....


• That can't be that difficult...?

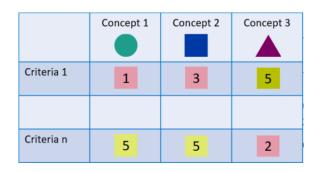
• OK, we need to better elicitate requirements with the user...

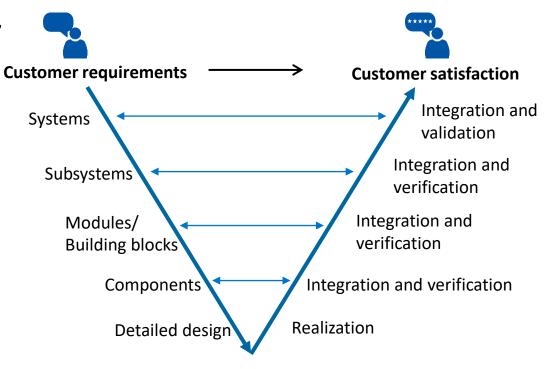
But who is "the user"...


Are the requirements SMART... And did we capture requirements from other Stakeholders...

1.	Incomplete requirements	13%
2.	Lack of user involvement	12%
3.	Lack of resources	11%
4.	Unrealistic expectations	10%
5.	Lack of executive support	9%
6.	Changing requirements & specs	9%
7.	Lack of planning	8%
8.	Didn't need it any longer	8%
9.	Lack of engineering management	6%
10.	Technology illiteracy	4%
Other		10%
Source : The CHAOS Report, Standish Group, 1995		

From *all* Stakeholders ...


• Service personnel, IT staff, regulatory, doctors, nurses, patients, transport, Marketing,...



And start designing once we have all requirements...?

- E.g. Alternating design iterations, concept creation/selection, iterations..
- Applying KANO analysis, CAFCR+, Kruchten 4+1,...


Or did we miss anything ?

- Do we really know what is needed / needs to be solved?
- Example: Need a car that is more fuel efficient, emits less greenhouse gasses...

Mild-Hybrid

- Best long-haul fuel efficiency
- Minimal extra weight
- Best agility, handling
- Extra complexity, cost

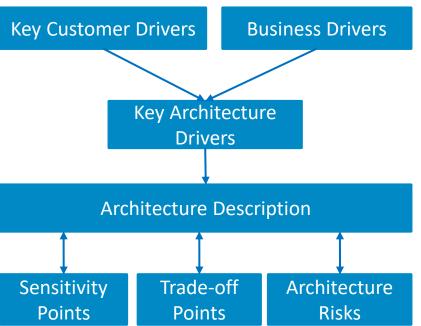
- Fuel *efficiency* worse
- Full electric on short distance, lower *overall* fuel-usage
- High additional weight
- Reduced handling, extra cost

Full electric

- "Zero" emission
- Quiet, Yet tire noise & wear
- High weight, limited range
- Requires new design: Less complex, but costly

Modification of existing (reference) architecture

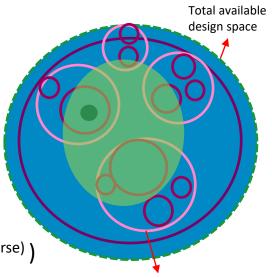
New (reference) architecture


That's where the Architect comes in

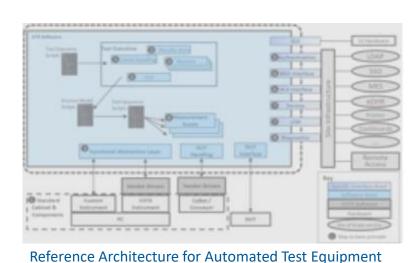
- Understanding What the problems are to be solved (Needs)
- Understanding What criteria to apply when ranking different concepts
- Understanding What the consequences are of Choices: In-depth domain knowledge + technical understanding of the product system
- Able to reason about the 3rd dimension: How would needs, product, use, suppliers, competitors, evolve over time
- And translating that to design concepts, (reference) architecture and/or architecture roadmaps

Starting the (reference) Architecture work

- Understanding Customer & Business needs
 - E.g. 'X as a Service' has other constraints than 'transactional sales model + Service contract'
- Analyzing
 - What to solve for our Customers, BU's
 - What are operating and usage constrains
 - What drives 'cost' (over life time)
 - What drives 'value' (over life time)
 - What ...
- Realization & sustaining aspects
 - Integration, technology choices, supply chain, dependencies, Risks, Sustainability, ...



Capturing Essential aspects in the (Reference) Architecture Driving commonality, compatibility and structure as a standard


- Reference Architecture: An architecture at reasonably high-level of abstraction
 - Covering most important functional blocks (high-level partitioning)
 - Depicting important & strategic interfaces essential for realizing value over life-time, e.g.
 - Enabling Future updates / upgrades / extensions / ...
 - Integration with other systems, 3rd party systems
 - Safeguarding **strategic** decisions, E.g.:
 - Use of certain (industry standard) interfaces
 - Supply chain choices (incl. make-buy, re-use, partnering, ...)
 - Desired commonality (to reach operational efficiency), ...
 - Applicable to overall design, and/or specific design aspects:
 - Guiding & constraining designs of (derived) products/systems
 - Guiding & constraining individual elements of products/systems
- In some way, a blueprint for an organization(Conway's law^{-1 (inverse)})

Reference architecture for a sub-domain

Some examples for which we created Reference Architecture

- Sonicare Tooth Brush
 - Strategic Interface: Brush head
 - standardized to allow combinations of handles & brush heads
 - Important internal Interfaces: Mechanical/battery
- Battery pack
 - Power & geometrical interfaces
 - Industry standard (SBS 1.1) data interface for battery state-of-health monitoring
- Automated test equipment
 - Defining the standard way of realizing them
 - Based on common design patterns
 - Facilitating integration & Configuration in different manufacturing environments

Conclusion/summary

- A Reference Architecture is a powerful concept, enabling cross-business cooperation
- Creating consistency towards users
- Improving efficiency (Supply chain, R&D, Life Cycle Maintenance, ...)
- Observation:
 - Many people typically dive into Technical design very quickly often too quickly
 - The real architecting work starts at Understanding the problem(s) to be solved
 - Iterating on technical design is good, especially for understanding and evaluating concepts
 - Focus of the reference architecture is

Not only on making the product right, but also making the right product ! and sustaining that over product portfolio and time, consistently

