MIDDLEWARE FOR SAFE SOFTWARE-DEFINED CARS

Andrei Terechko, Yuting Fu, Jochen Seemann 5 OCTOBER 2021

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.

AUDIENCE SURVEY

- 1. Who works in the automotive industry?
- 2. Who knows benefits of the zonal architecture?
- 3. Why do we need Time-Sensitive Networking?
- 4. Who worked with ROS, SOME/IP or MQTT?

OUTLINE

- 1. What is middleware doing in the software-defined car?
- 2. Survey of middleware protocols and software stacks
- 3. Proof-of-concepts: DDS-TSN integration and DDS-based safe fail-over design
- 4. Conclusions and further reading

DISTRIBUTED PROCESSING: THE TREND IN AUTOMOTIVE SYSTEM ARCHITECTURE (HARDWARE PERSPECTIVE)

- Physical consolidation to reduce wiring
- Central computer for number crunching
- Zonal modules have to safely and securely:
 - -aggregate
 - -forward
 - -convert
 - -process
- A PCB or SoC has distributed processors to boost efficiency and modularity
- Complex requirements on networking devices

DISTRIBUTED PROCESSING: THE TREND IN AUTOMOTIVE SYSTEM ARCHITECTURE (SOFTWARE PERSPECTIVE)

- Past: weakly programmable ECUs, each performing one mostly isolated function
- Present: consolidated ECUs running flexible software with complex control and advanced functions
- Future: *software-defined cars* with easy-to-program distributed interoperable software services; the corresponding system architecture is commonly referred to as <u>Service-Oriented Architecture</u>
- <u>Middleware</u> is a collection of software libraries for distributed processing simplifying development of composable modular systems; the middleware is a key building block of the service-oriented architecture
- Middleware examples: ROS, DDS, SOME/IP, MQTT, Cyber RT, Apex.Middleware, Iceoryx, ...

MIDDLEWARE SOFTWARE STACKS COMPARISON

COMPARISON OF POPULAR (AUTOMOTIVE) MIDDLEWARE PROTOCOLS

Communication Protocol Characteristics	DDS	ROS1	Cyber RT	<u>uORB</u>	SOME/IP	<u>UAVCAN</u>	POSIX Socket	OpenAMP + <u>RPmsg (channel)</u>	<u>AMQP</u>	<u>ZeroMQ</u>
Publish-Subscribe pattern	Y	Y	Y	Y	Υ	Y	Y (limited)	N	Y	Y
Real Time Publish-Subscribe (RTPS)	Y	N	Y	N	N	N	N	N	?	N
Remote Procedure Call (RPC)	Y	Y	Y	?	Y	Y	N	Y	Y	Y
On-chip communication	Y	Y	Y	Y	Υ	Y	Y	Y	Y	Y
Inter-chip communication	Y	Y	?	N	Y	?	Y	Υ	?	?
(Re)discovery	Y	Y	Y	?	Y	Υ	N	Y	Y	Ν
Real-time	Y	N	Y	N	?	Y	Y	Y	Y	Y
Multi-OS support	Y	Y	?	Y	Υ	Y	Y	Y	Y	Y
Security	Y	N	Y	N	Y	Y	N	Y	Y	Y
Quality of Service (QoS)	Y (rich)	N	Y (limited)	N	Y (very limited)	Y?	Y (limited)	?	Y	Y
Standard API	Y	N	N (Apollo-specific)	?	Y (AUTOSAR-specific)	Y	Y	N	?	Y
Safety certification	Y	N	N	N	?	N	N	Ν	N	N
License	Open source & Commercial	Open source	Open source	Open source	Open source	Open source	Open source	Open source	Open source	Open Source

Data Distribution Service middleware meets requirements of autonomous driving systems:

- Safe and reliable
- Secure
- Automotive certification
- Ethernet (UDP, TCP), Shared memory, UART, PCIe

- DDS-TSN (Time Sensitive Networking) integration
- Resource-constrained safety core (RTI Micro, DDS-XRCE)
- Quality of service for different data streams
- Large ecosystem of tools and libraries

Reference: https://www.rti.com/industries/automotive/autonomous-vehicles-production

OUTLINE

- 1. What is middleware doing in the software-defined car?
- 2. Survey of middleware protocols and software stacks
- 3. Proof-of-concepts: DDS-TSN integration and DDS-based safe fail-over design
- 4. Conclusions

drive-by-wire (simulator) interface camera service for telematics RTI Connext® DDS S32G, SJA1110

automated driving simulator

workstation

(zonal) gateway

Time-Sensitive Networking SJA1110s

network

Autonomous Valet Parking RTI Connext® DDS LS2084

high-performance computer

OPEN-SOURCE DEMO TO PROMOTE DDS AND TSN INTEGRATION

- Goals:
 - illustrate and popularize advantages of the DDS and TSN integration
 - simple evaluation with open-source ROS tools and consumer devices
- Implementation:
 - application code from scratch at NXP
 - automotive use-case: moose test
 - based on ROS 2 Foxy and Gazebo
 - Published on GitHub: <u>https://github.com/NXP/dds-tsn</u>

FAIL-OVER AND TAKEOVER SAFETY MECHANISMS BASED ON DDS [PUBLIC URL]

CONCLUSIONS

- Software becomes the key differentiator, supported by cost-effective programmable reliable chips
- Middleware software enables safe distributed processing in a software-defined car
- Applications demand from middleware:
 - modular and composable component API with various language bindings
 - various Quality-of-Service policies (redundancy, real-time, reliability)
 - rich ecosystem of libraries, tools, documentation
 - certifications, community or commercial support
- Platform demands from middleware:
 - ability to run on various OSes and processors (RTOS, lock-step resource-constrained cores)
 - mapping of DDS topics and QoS policies to TSN Ethernet streams and protocols
 - support for various transport media (TSN Ethernet, PCIe, shared memory)
- DDS meets many requirements of automotive applications and platforms

FURTHER READING

- 1. NXP and RTI on **DDS-TSN** integration webinar
- 2. TSN and middleware integration at NXP <u>TechDays</u>
- 3. Open-source DDS-TSN integration example on NXP GitHub
- 4. NXP webinar "Transition to Zonal Architectures: Challenges and NXP Solutions"
- 5. NXP trainings on service-oriented gateway S32G
- 6. "<u>Choosing the Right **TSN Tools** to meet a Bounded Latency</u>" by Don Pannell (2nd <u>link</u>)
- 7. "DDS and TSN: the future of real-time data exchange?" blog post by RTI
- 8. GuardKnox on **zonal** architectures , SOA and software-defined cars
- 9. McKinsey report on automotive software and electronics through 2030
- 10. A DDS-TSN integration white paper is coming up, let me know if you are interested

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.