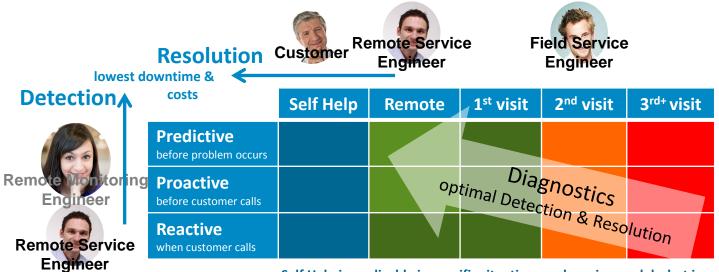
Remote Service

SASG - Big Data

From machine design to IT management & Remote Service

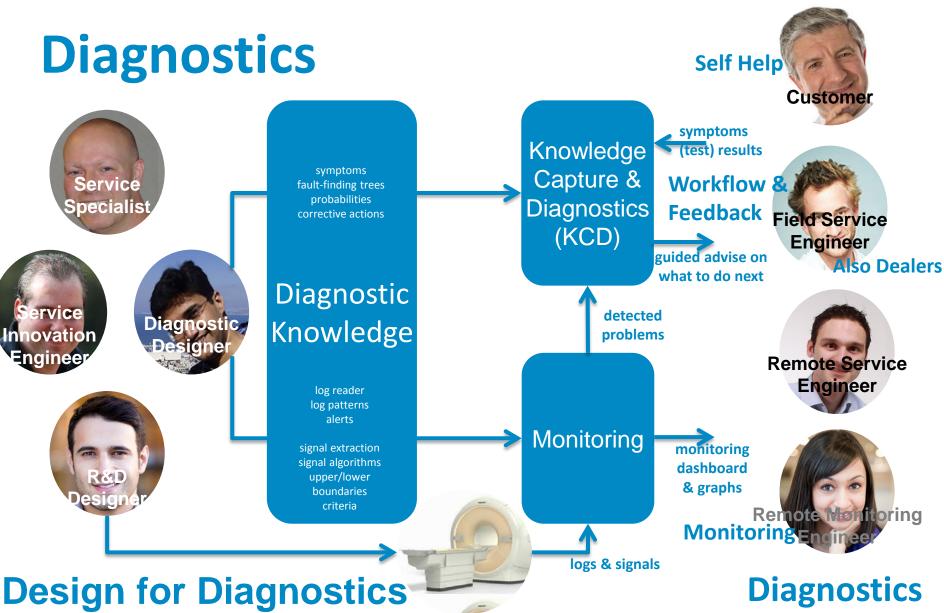
Marcel Boosten Philips Healthcare October 7, 2014


Marcel Boosten

- Philips Lead Design for Serviceability
- Solution Architect Diagnostics
- Healthcare Imaging Systems Customer Services
- History
 - 1994: ir @ TU/e
 - 1996: mtd @ SAI
 - 1999: phd @ CERN
 - 2000: SW Architect @ CT
 - 2002: System Architect, Innovation Manager @ iXR 3D
 - 2007: Innovation Architect @ iXR
 - 2010: into Service

Diagnostics

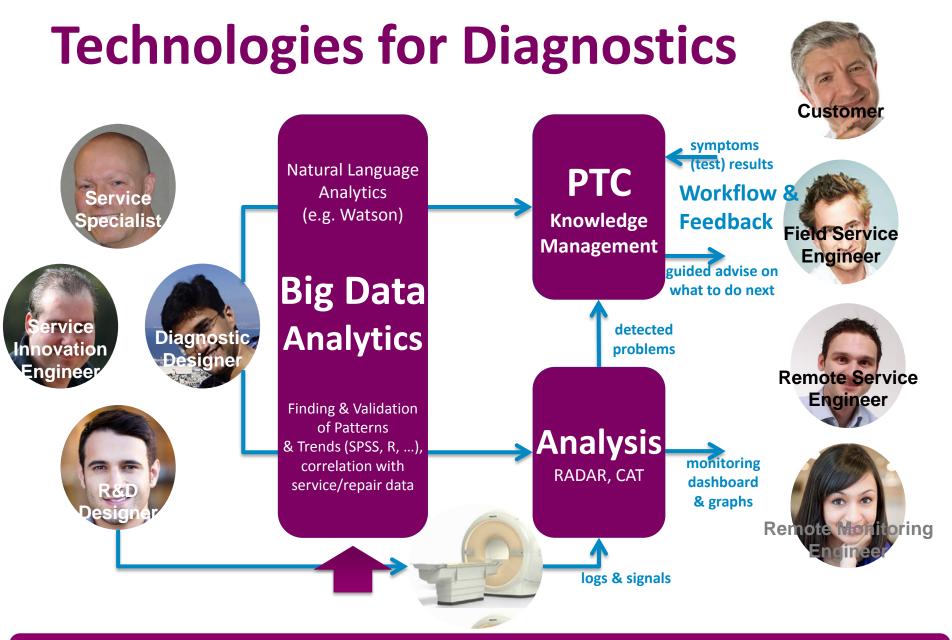
Objective: maximize uptime (=value), minimize internal costs (visits, parts, hours)



Self Help is applicable in specific situations and service models, but is not a general strategy.

Design state-of-the-art Diagnostics

[1] on-to devices - no device changes required, only external
[2] in-to devices - the device changes
while continuously improving it based on service statistics & feedback.



in-to and on-to devices + continuous improvement

fully automated where possible and guided otherwise

Monitoring based on logs & signals to detect/predict problems. KCD supports human workflow (symptoms, tests, actions) and closes the feedback loop. Diagnostic Knowledge is created by combining *Expert Knowledge* and *Data Analytics*.

Big Data *Analytics* can be used to *support people* to *efficiently* create & optimize Diagnostic Contents.

Remarks

on Big Data Analytics to create Diagnostic Contents

Big Data Analytics allows *non*-subject-matter-experts to 'discover' diagnostic patterns, provided:

- 1. Data is available, and
- 2. Data is reliable, and E.g. known corrective action & moment in time that actually did solve the problem.
- 3. Enough data is available to perform statistics for such specific case, and
- 4. The data contains the useful observations

Expert knowledge allows compensating for 1..4

Look at code & design Human interpretation

Expert info & judgement

Build new tests

Design for Diagnostics on-to Devices

The combination of Expert knowledge with Data Analytics capabilities is needed to address Diagnostic Content creation effectively.

Design for Diagnostics in-to Devices

ensures the right monitors & tests & service actions are designed into the system. *This is essential to get good, accurate, and precise remote diagnostics.*

Design for Diagnostics

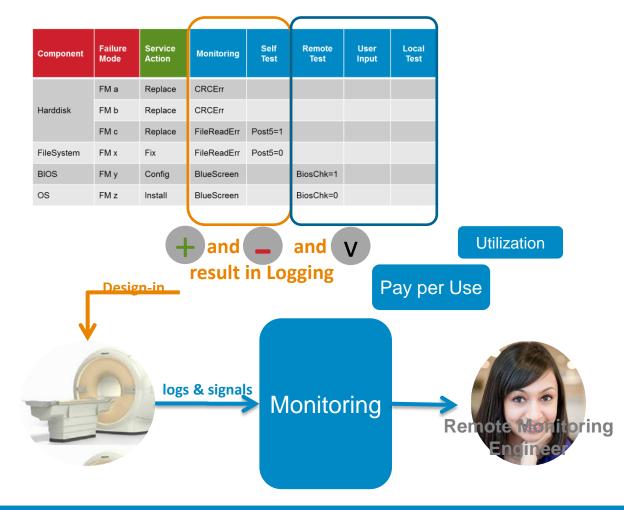
	Test Method	Remote	Proactive Predictive Intermittent	No clinical downtime	Lead time to Detection	
	Monitoring	\checkmark	\checkmark	\checkmark	Instant	
	Self Test	\checkmark	×	\checkmark	@system available	
	Remote Test	\checkmark	×	×	@scheduled time slot	
	User Input (a simple question asked via phone)	\checkmark	×	\checkmark	@tech available	
	Local Test	×	×	×	@FSE in hospital	

PHILIPS

Design for Diagnostics

Design a one-to-one relation between observation and the service action required for each failure mode.

	Component	Failure Mode	Service Action	Monitoring
	Harddisk	FM a	Replace	CRCErr
eten		FM b	Replace 🛓	CRCErr
Completeness		FM c	Replace K	FileReadErr
U C C	FileSystem	FM x	Fix K	FileReadErr
	BIOS	FM y	Config	BlueScreen
	OS	FM z	Install	BlueScreen


The Design Challenge: Fitting it all together

Component	Failure Mode	Service Action	Monitoring	Self Test	Remote Test	User Input	Local Test
	FM a	Replace	CRCErr				
Harddisk	FM b	Replace	CRCErr				
	FM c	Replace	FileReadErr	Post5=1			
FileSystem	FM x	Fix	FileReadErr	Post5=0			
BIOS	FM y	Config	BlueScreen		BiosChk=1		
OS	FM z	Install	BlueScreen		BiosChk=0		

- (1) Identify all Failure Modes
- (2) High-Level Design of Service Actions: How-to & Service Agent (€)
- (3) Diagnostic Design
 - High Level Design of Observations: How-to & Service Agent (€)
 - Design the one-to-one relation: Observations > Service Actions
- (4) Detailed Design of Service Actions
- (5) Detailed Design of Observations

Logging

Each Log is an External Interface of the Device on which Services depend.

(so, sometimes more than 50% of your business)

Logging should be a Managed Interface.

(often, it is not managed in practice!)

PHILIPS

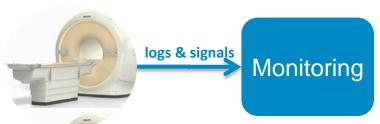
Logging as Managed Interface

Log => Log Messages

Consistency across releases

Services, such as Diagnostics, are performed on the installed base – i.e., across different SW & HW versions of the system. The Logging Interface should be managed & kept consistent for a Product Family, consistently across releases.

Stable semantics of each Log


Each Log has a unique (type) id, and fixed syntax and semantics.

- New semantics => NewID
- Avoid changes

Logging as Managed Interface: it is obviously needed, it is not difficult, but... hardly ever done properly in practice...

Diagnostics, Logging & Alerting

Challenges

Log Size 'Too Big' (for bandwidth, costs of remote solution)

usually a lot of garbage is generated. Solution: **garbage filter**, pareto-based reduction So not: reducing useful info, or designing for minimal bandwidth. Just avoid excessive bandwidth.

Alerting - Immediate attention

Solutions: [1] constant upload, or [2] immediately if ..., or [3] on-device rules

On-Device Diagnostics

- Updateable 'with the enterprise' without FCO (Field Change Order) of Medical Device
- Running in background without impacting Medical operations
- Question to this team: Interested in solutions
- Big Data Fear, Privacy, Security & Intellectual Property
 - Service Logging & Utilization Logging 'overlaps'. Privacy laws. 'Site' vs 'Cloud' solutions.
 - Logs are owned by hospital. Hospital can give it to 3rd parties for 3rd party service.
 - Various levels of 'knowledge', Intellectual Property:
 - Log102123
 - Log102123 X-Ray Problem
 - Log102123 X-Ray Generate peak detected
 - Log102123 X-Ray Generate peak detected replace Maximus board

PHILIPS

Summary of Main Messages

- Design for Diagnostics [1] on-to devices, and [2] in-to devices while continuously improving it based on service statistics & feedback.
- On-to: Big Data Analytics can be used to support people to efficiently create & optimize Diagnostic Contents. Challenges: creation/optimization efficiency, dealing with uncertainties, access to expert knowledge.
- In-to: *Design* a *one-to-one relation* between *observation* and the *service action* required for each *failure mode*.
 Observations via logs resulting from monitors & tests.
- Each Log should be a *Managed* External Interface.

Related Challenges:

- Independently updateable on-device diagnostics / data preprocessing
- Big Data Fear, Privacy 'Site' & 'Cloud' solutions

