

Prof Dr Ir Egbert-Jan Sol

Innovatie Directeur High-tech systems and materials

The past of ESI – and architecting

Do you know them?

Michiel Oderwald, MSc

De Tricorder

1997: ESSI

(Eindhoven Embedded Systems Institute)

Het EESI heeft drie hoofdthema’s gekozen:

draadloze thuisnetwerken,

mobiele multimediasystemen en

navigatiesystemen voor transport & logistiek.

Past of E(E)SI

1996: Min EZ (Wijers) start 4 Technological Top Institutes

 out of 16 proposal 4 were chosen (food, metals, polymers & telematics)

 TU/e with Philips has proposed Embedded Systems,

but did not lobby for it hard enough in 1996 and was not selected

One year later Rick Harwig of Philips decided that TU/e should

start any way and he requested funding from (Philips), ASML, Oce,

FEI en Ericsson (each 25K) to start the EESI. Next we Martin Rem, Leo

Coolen, Patrick Dewilde and .. selected the first project with IS funding

1998-2000 already discussion on systems architecturing.

 (Arian Zweegers (Architecting, 1998) and Rob de Graaf (Concurrent

 Engineering, 1996) with an assessment method including one on

 capabilities from initial to mature architecting.

Michiel Oderwald, MSc

De Tricorder

© 1997 Ericsson Telecommunication BV, EJ Sol 4

Architecture Competence Program - page 1/4

Input Egbert-Jan for 15 Dec 97 workshop (modeled after Philips)

Goal:

Improve architecture competence within Ericsson by supporting the

development of top-quality system architects for Ericsson

and securing a continuous supply of this scarce competence

Definition of system architecture: (for other definitions see

http://www.sei.org)

Complex systems need structuring into modules & interfaces.

Complex systems survive only if they adapt to their environment.

Architecturing (managing modules + interfaces) is maintaining the

system integrity during the evolution of complex systems.

Goal of architect is to identify (in advance) the (future) changes in

requirements (market) and (new) technology and adapt the system

(or build a new one) while maintaining the system integrity

© 1997 Ericsson Telecommunication BV, EJ Sol 5

Architectures definition

Definition: architecture =

 modules + interfaces

Complex System:

 how to structure

 in smaller blocks

Interfaces:

 Architecturing = management of interfaces

 Architect = responsible for the system integrity

 and owner of the interface

“One should introduces interfaces to open systems,

 but one should never open-up one’s own core competences”

© 1997 Ericsson Telecommunication BV, EJ Sol 6

Value of a good architecture:

 “Future Flexibility”

 bad good

Architecturing is focussing on evolution,

 on a facilisation to change, (learning curve)

 while maintaining the integrity of the system

Focus on change is the difference from (software) engineering

Architecturing

© 1997 Ericsson Telecommunication BV, EJ Sol 7

Architecture Competence Program - page 4/4

Training program and competence network:

30% on architecture of (different and future) Ericsson products

30% on marketing (architects work together with marketers)

30% on (social) communication skills (multi-cultural, presentations,)

10% on theory (definition, means and methods, interface languages, .)

roulation program

rapid learning curve but changing working environment/project more

often and be confronted with complete different technologies

(hardware/chip design, real-time software, protocols, ….)

(forced) assignment (on part-time basis) to investigation programs

have senior and junior architects from mixed business areas

investigate

and experiment with (new) important technologies (and learn to know

each other in action (workmeetings) and not during seminars, etc.)

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 8 R1 1999

Architecting: From art to professional discipline

“managing the future flexibility of complex systems”

No time, I have a

battle to fight Uh,

Egbert-Jan Sol

Eindhoven, 19 jan 2000

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 9 R1 1999

Basic process & Automation

1-gen.

 Waterput

2-gen.

 Watertower

3-gen.

 Pompstation

4-gen.

 Region Contr.

Proces Control

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 10 R1 1999

Architecture

Raw water

from river

and ground

(day)

Clean water

(hour)
3x 3x 3x

Prognose
Distribution

Alarm

Region

PompStation

PU

PS

Pomp Unit

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 11 R1 1999

Monolithical software architectures

Proprietary bus architectures

started around one issue to automate

designed in the 70, implemented in COBOL (<50 KLOC)

software size grows larger (500KLOC), while modules

were added to legacy systems. Need to structure

LOC= lines of code

Small program to support hardware

500 - 5K LOC= lines of code

Evolution of software systems

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 12 R1 1999

Improving large scale software systems

1. renovate existing code

 if maintenance costs too high & functions still OK

2. make user/interactive/external part more flexible

 if many change requests exist in user interface part

3. make (kernel) transaction part more flexible

 if transactions (here connections) cause more problems

4. build new

 if business processes change heavily

+ combination of strategies

 Performance of a systems must improve continuously:

 this requires continuous change (learning curve behaviour)

Architecturing: Manage the continuous changes

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 13 R1 1999

Shop Floor Control evolutions

.

 Key module for Work Tracking/Logging:

 Technical basis:

 COBOL (1960), VAX (1980) hardware,

 indexed sequential files (1970) as database

SFC 2 (improvement or more extentions)

SFC 1

audit: SFC 1 become a legacy application

 no global design, mix of functions, complex I/F, improve (re)structure

today: I/F (interfaces) restructured between subsystems

BW

AR

LTR EQH
PAM

database

database

interface
file

interface
file

interface
file

TDM

interface
file

Krant

SFC 3: the open application system

 but how to get there in a running factory

BW LTR SPC

EQH

TDM,

AR,.

Terminals

Spec files

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 14 R1 1999

Opening SFC - Incremental Implementation

nuclues isolated,

all others parts

on modern system

in 2000

Equi Terminals

Spec files

proof of

concept

1

2

3

EQH

Perf.

krant

EQH
Terminals

 GUI

Spec files

EQH

Key Perf

EQH GUI

Spec files

Real-Tim

Schedule

EQH

I/F

others

EQH GUI

Real-Tim

Schedule
Key Perf

Relat.

DBMS

old

platform

new

platform

platform

convertor

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 15 R1 1999

Architecture principles

Monolith Hierarchy Distributed

....

....

1-TO-1

(POMPSTATION

AND OWN UNITS)

CONTROL OVER

POMPSTATIONS

(PU, PS, Region)

Complex

add layers

Robust

no central point of failure

DISTRIBUTE CONTROL,

but much DATACOMM. needed

in a Wide Area Network (WAN)

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 16 R1 1999

From vertical chains to segmented value chains
N

e
w

s
p

a
p

e
rs

T
e
le

v
is

io
n

E
n

e
rg

y
/U

ti
li

ti
e
s

C
o

m
p

u
te

rs

T
e
le

p
h

o
n

y

Suppliers

(equipment)

Transport

Network

Service

Operators

Content

Creators

Yesterday’ vertical markets
(e.g. in Computers: IBM, Digital, ..)

Tomorrow
(e.g. Microsoft in Operating Systems)

B
a
n

k
in

g

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 17 R1 1999

Monolithical software architectures

Proprietary bus architectures

Open bus architectures

started around one issue to automate

designed in the 70, implemented in COBOL (<50 KLOC)

software size grows larger (500KLOC), while modules

were added to legacy systems. Need to structure

buy world-class modules (appli., rel. DBMS) as

software otherwise grows too large (toward 5MLOC)

but how interface it: use open standard

LOC= lines of code

Small program to support hardware

500 - 5K LOC= lines of code

Evolution of software systems

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 18 R1 1999

 Software Development Evolution

Data

1990 Data defined/used everywhere -> Structured Data Types (Objects)

 Databases, Object-Oriented Languages (C++)

Software: algorithm + data + control
 (static/sequential) (dynamics, states)

Algorithm

1975 JUMP, GOTO spaghetti -> Structured Programming (Begin…End)

 Basic, Cobol, Fortran (Dijksta, NL) Algol, Pascal, C

Control

200? Event, Multiple states, Synchronization, Real-time

 Object sending/receiving messages (what is happening where??)

1995: Java “network centric” (then just a better C/C++)

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 19 R1 1999

Debugging & Testing

1 Program on 1 Computer x number of bugs/

 x hours of testing

1 Program on 2 Computers x number of bugs/

 x hours of testing

2x number of bugs

2x hours of testing

(x)2 number of bugs

 (x)2 hours of testing

Because it are 2 programs on 2 computers

Distributed computing / Network computing is difficult:

 you have to test the correct algorithm flow and correct data in all multiple states

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 20 R1 1999

Monolithical software architectures

Proprietary bus architectures

Open bus architectures

started around one issue to automate

designed in the 70, implemented in COBOL (<50 KLOC)

software size grows larger (500KLOC), while modules

were added to legacy systems. Need to structure

buy world-class modules (appli., rel. DBMS) as

software otherwise grows too large (toward 5MLOC)

but how interface it: use open standard

LOC= lines of code

Small program to support hardware

500 - 5K LOC= lines of code

Networked Software Architectures

Evolution of software systems

Higher abstraction level:

Architecting becomes key

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 21 R1 1999

Architecting is focussing on evolution,

 on a facilitation to change (learning curve),

 while maintaining the integrity of the system

Focus on change is the difference from (softw.) engineering

Architecting

Phase Purpose Output

Reference Model Common
Language

Terms,
Definition

Architecture

Define what
(functions)

Modules &
Interfaces

Design

Define how
(cost/preformance)

Specifications
Drawings

Realization

Build/Use

a product,
control system,
a building,

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 22 R1 1999

Architectures definition

Definition: architecture =

 modules + interfaces

Complex System:

 how to structure

 in smaller blocks

Interfaces:

 Architecturing = management of interfaces

 Architect = responsible for the system integrity

 and owner of the interface

“One should introduces interfaces to open systems,

 but one should never open-up one’s own core competences”

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 23 R1 1999

Value of a good architecture:

 “Future Flexibility”

 bad good

Architecturing is focussing on evolution,

 on a facilisation to change, (learning curve)

 while maintaining the integrity of the system

Focus on change is the difference from (software) engineering

Architecturing

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 24 R1 1999

We need System Architects

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 25 R1 1999

1-Dimensional Straight Forward CMM

Software

Development Process

Controller

(improvement

program)

Increment one level

(from L2 to L3 and from L3 to L4)

How ?

CMM

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 26 R1 1999

Capability Maturity Model

(software development

 process)

1: Initial

configuration mgt

quality assurance

subcontract mgt

project tracking & oversight

project planning

requirements mgt

2: Repeatable

disciplined

process

4: Measured

predictable

process

software quality mgt

quantitative process mgt

software product alignment

3: Defined

standard,

consistent

process

peer reviews

intergroup coordination

software product engin.

integrated softw. mgt

training program

organiza. process definition

organiza. process focus

5: Optimized
process change mgt

technology change mgt

defect prevention

Ericsson Rijen

CMM L3 since 95

Ericsson Enschede

CMM L2 since 98

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 27 R1 1999

BRACE structured change management

Critical Elements (CE)

(9 process, 5 technology)

CE

CE

BD Imp

Marketing & Development

Process

Controller

Filter

Trends

Business Drivers (BD)

Sensor

Improve-

ments (Imp) Sensor

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 28 R1 1999

BRACE model Process-Technology

Customer Focus

Product Assurance

Leadership

Team Formation
Agility

Teams in Organisation

Process Focus

Management

 Systems

Discipline

Systems Integration

Information Sharing Coordination

Communication

Application Tools

PROCESS

TECHNOLOGY

Strategy

Product Architecture

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 29 R1 1999

From: BRACE questionnaire

Product Architecture Support

2. Are the restrictions that apply to realization of the functional requirements illustrated?

3. Are interfaces of the subsystems & external influences that can disturb these interfaces modeled available in an early

stage?

 4. Is the coupling between the subsystems provided as a reference in the information system?

5. Is the robustness of key interfaces ensured by the information system in use?

6. Can the information system suggest components for reuse during the development of a new product?

7. Are the down-stream consequences of choices concerning reuse that are made during development communicated

automatically to the involved disciplines?

 8. Are relations between components and interfaces coordinated by information systems?

9. Is the generic product family model electronically available to all disciplines?

10. Are dedicated software modules used for description of the product’s interfaces?

11. Are discrepancies between modules identified automatically?

12. Does a workflow management system ensure the product, its modules and interfaces are developed according to its

decomposition sequence?

 13. Can suppliers view design information concerning the parts of the product that influence their product development

process?

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 30 R1 1999

A product architecture is used to define the relationship between requirements and

product specifications at a certain abstraction level that is useful to an organization.

The usefulness is determined by four major aspects:

1. Complexity Reduction.

Components or subsystems can be designed relatively independently, with reference

to the interface only and not to the whole product or system.

2. Reuse.

Product architectures enable reuse of components across product families,

enabling commonality of components in contemporary products. Furthermore, product

architectures can be employed to achieve reuse of components in future products.

3. Project Organization.

As product architectures illustrate the relationships between components, they indicate

which issues need to be discussed in the development team. The project can be

organized around the product architecture, with high concurrency among the

development of the components.

4. Product Strategy.

Finally, the product architecture can be used to define components with added

value. The design team should then outsource the components that have little added

value. The product could also interface with an environment that consists of standard

components. This way, future improvements in the price performance ratio of these

components are automatically incorporated.

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 31 R1 1999

Architectures - conclusion

Architectures to
– reduce complexity

 hierarchy vs distributed
 advantages/dis-advantages

– re-use
 of modules with fixed interfaces
 interfaces: command request, status indication, ...

– project support (sub projects)
 one common backplane “bus”
 plus independent modules developed
 in parallel or sequential in time

– product strategy (compete on interfaces)
 “computerless computer company” article

EJ Sol Ericsson Nederland (ETM) Marketing & Technology 32 R1 1999

The Computerless Computer Company

1975-1985:
Hardware

Decade

HARDWARE

IS COSTS

1985-1995:
Software
Decade

SOFTWARE

IS SCARCE

HARDWARE

IS CHEAP

 Replacing:

 typewriter by a text editor

 calculator by a spreadsheet

Apple

Microsoft Microsoft

BIOS BIOS

IBM, Compaq,

Taiwan,

 HBR, Jul-Aug, 1991

80-90 70-80

Comm.

(KPN)

Softw.

(Micro-

Soft)

Hardw.
Hardw.

(IBM)

90-2000

Softw.

Hardw.

Appli. &

Services

(You !!)

Death of

distance

Open

Source

Micro-

systems

2000-2020

Main-

Frame

1970 Mini

1979

PC-AT

1984 Pentium

1992
Notebk

1997
PDA 2001

S-i-P 2010 Push-Pin

2020

0

2

4

6

8

10

12

0 5 10 15

€/subs-service

0,1

0,01

 0,001

1

10
TV

Triple

 Play

subs-service MB/day

Fixed

Mobile

€/ MB/day

1

10

100

3 90 989 1800

Legend

MIPS

Costs/MIPS

Mainframes
PC's

… Towards a LOW-COST SKIN

TEMPERATURE

PATCH

Michiel Oderwald, MSc

De Tricorder

EXAMPLE FOIL INTEGRATION

Michiel Oderwald, MSc

De Tricorder

A COMPLETE TECHNOLOGY PLATFORM

FOR SYSTEM-IN-FOIL DEVICES

Thin film electronics
- TFT circuits

- Non-volatile memory

- Diodes and rectifiers

Interconnects
• Printed metals

circuitry

• Foil lamination

• Microvia technology

Heterogeneous integration
• Integration of (ultra-thin) Si chips

• Integration of thin-film components

(battery, sensors, ...)

Foil
• from flex to

conformable

to stretch

Michiel Oderwald, MSc

De Tricorder

Van 1998 tot 2014

Lou Feijs (1998-2001)

Martin Rem – EESI became ESI (Ericsson stapt uit,

 assessment of ESI by Patrick Dewilde – focus on embedded in

equipment (1m3), no on chips

Ed Brinksma

Boudewijn Haverkort

Frans Beenker (TNO-ESI)

Michiel Oderwald, MSc

De Tricorder

TNO 2014

Vroeger cooperatieve research (1932-1960)

Veel instituten, bijna per branch (hout, lederwaren, etc.)

1960-2010 van forse rijksbijdrage (75%) naar meer competitieve

subsidies en later meer en meer bedrijfsbijdrage (B2B, testen) (40% rijk,

30% competatief, 30% bedrijf)

2010-

Testen en repeat afgestoten, rijksbijdrage nog verder naar beneden en in

NL geen innovatie subsidies (25% rijks, 10% TKI, 15% EU, 40% B e.g.)

Forse focus op europese, nu H2020 subsidies en

Shared Research Programma

Holst, ESI, maar nu ook Solliance, Snellius, van’t Hoff, DITCM, ..

In feite cooperative research, maar nu met EU en TKI funding

SRP’s: 5M+/year, own board, own branding/way of working, within TNO.

Michiel Oderwald, MSc

De Tricorder

Michiel Oderwald, MSc

De Tricorder

So, my question is what has changed in 15 years?

