
Erik Oerlemans, Hans van Wezep
Philips Healthcare
October 04, 2011

Code generation with ASD
at Philips Healthcare iXR

Confidential Philips Healthcare, October 04, 2011 2

Overview

• Philips interventional X-Ray (iXR): Introduction
• ASD Code Generation applied in:

– Back End and Front End subsystems
• Experiences and Observations of the FE subsystem

Confidential Philips Healthcare, October 04, 2011 3

System
Architecture

Philips Healthcare: iXR introduction

Intervention Room

Control Room

Image Processing

Confidential Philips Healthcare, October 04, 2011 4

Component-based Design using ASD

FE BE

IP

BE-FE
Interface

BE-IP
Interface

FE-IP
Interface

Confidential Philips Healthcare, October 04, 2011 5

FE

BE

IP

BE-IP
Interface

BE-FE
Interface

FE-IP
Interface FE Hardware

FE Hardware Abstraction Layer

Movement
Control

Image Generation
Control

Scenarios

Application state controller

NGUI FE Adapter

Confidential Philips Healthcare, October 04, 2011 6

BE

FE

IP

BE-IP
Interface

BE-FE
Interface

FE-IP
Interface

BE Hardware

BE Hardware Abstraction Layer

Database

Applications

Scenario Control

FE Client Image Processing
Control

Confidential Philips Healthcare, October 04, 2011 7

Some numbers

Back-End Front-End
Nbr of models 66 55
Nbr of generated code files 110 72
Nbr of LOCs 36 000 (C#) 46 000 (C++)
Nbr of people 6 4

Confidential Philips Healthcare, October 04, 2011

FEAdapter

8

FE Adapter - internal design

FEAdapter CXA Protocol

FEAdapter Main Manager

Activation Acquisition Control ExamEpx
Component

Acquisition
Requests

Acquisition
Requests

Component

Acquisition
Requests
Adapter

ExamEpx
Adapter

Acquisition Control
Component

Acquisition Control
Adapter

AcqCtrl
Stateless UI Stateless Cmd

Stateless

UI
Component

Command
Component

UIAdapter CmdAdapter

FEAdapter Stateless Version
Component

FS
Stateless

FS
Component

FS Adapter

Legend: Fully generated
ASD code

Partly generated
ASD code

Fully hand-written
code

Confidential Philips Healthcare, October 04, 2011 9

Observations - Race conditions
 • Model checking frequently shows race conditions,
 showing design problem to deal with “simultaneous”

– client call and
– callback from used interface
which lead to different states

• Forwarding valued calls leads to additional race conditions

Confidential Philips Healthcare, October 04, 2011 10

ASD Code generation applied

ASD code generation of the Frond End Adapter:

• C++/C# source code is generated from verified ASD Interface and
Design Models:

– Source code is guaranteed to be correct and defect-free (according
to the specified ASD models)

– Source files that are ready to compile, link, and execute.
– Generation of both singleton and non-singleton components
– Full support for parameter passing (but no data handling!)

Confidential Philips Healthcare, October 04, 2011 11

ASD Code generation applied

ASD code generation, additional components:

• A language specific ASD:Runtime software package
• For C++ boost library OS abstraction

Front End Adapter
ASD generated code

OS primitives

ASD Runtime

ASD Part (queue, timer)

OSAL part (for C++ boost)

Confidential Philips Healthcare, October 04, 2011 12

Observations – Code generation

• Interface models provide type information for API arguments, design
models provide the control behavior.

– As a consequence Interface model is programming language
specific

• Custom trace and logging handlers are needed to fulfill trace and
logging requirements of the system

• Data handling components need to be written

• Wrapper code has to be made to realize IPC between generated
components and other (executable) components.

Confidential Philips Healthcare, October 04, 2011 13

Configuration management approach

• The following items are put into our configuration management tool
Clearcase:

– CXA C# interface assemblies and CXA ASD interface models
– ASD interface and design models
– Source code (including the generated ASD source)
– ASD runtime
– BOOST library

Confidential Philips Healthcare, October 04, 2011 14

Observations – Configuration management

• CXA C# interface assemblies and CXA ASD interface models should be
placed in a centralized place to avoid duplication and mismatches

– Is being worked on.

• One button ‘Generate & build’ not in place
– Main reason is that our build environment is virtualized without any

connection to the Internet ; which is required for code generation

Confidential Philips Healthcare, October 04, 2011 16

– Requirements Capturing:
• Requirements have to be very clear and complete before using the ASD tooling.
• Our system has a lot of hidden/implicit requirements; these were made explicit

for our ASD components.
• Mindset change; get the needed info, instead of waiting till it is handed.

(designer vs. engineer/programmer)

– Design/Modeling:
• Provide a complete specification of the control behavior of a component (both

happy and non-happy flows) at design time.
• The control behavior of each component can be verified early in the process,

and each component can be verified in isolation (separation of concerns).
• When requirement change, do not be afraid to re-factor your ASD design. It is

often easier to start over than to force new requirements in your existing design
• Designing the interface of a component is different from designing the

component itself.

Lessons learned

Confidential Philips Healthcare, October 04, 2011 17

– Code generation:
• Code can be generated automatically from ASD design models.
• Generated code from verified models is guaranteed to be correct.
• ASD generated code does not ‘fit’ directly into an existing execution

architecture.
• Additional C++ libraries (ASD:Runtime and boost) required.
• Design of interface determines types in code; interface model is language

dependent!!

– Testing:
• Using ASD does not eliminate the need for testing! ‘Foreign’ components still

need to be tested as well as their interaction with the ‘pure’ ASD components.

Lessons learned

Confidential Philips Healthcare, October 04, 2011

Philips iXR: Architectural Challenge

FE

BE

 IP

Image Processing

Intervention
Room

Control Room
Hospital
Information
System

System
Architecture

Redesign the system architecture:

• To cater for over 1 million product
variations

• Supporting fast the clinical
segments (Cardio, EP, Neuro/Rad,
and Surgery)

• That allows for 3rd party suppliers
and warm integration with partners
offering complementary solutions

• That allows for products that can
be serviced for 10 years

• In incremental steps (no
revolutionary design from scratch)

Confidential Philips Healthcare, October 04, 2011

Development Process using ASD

1. Identify requirements, responsibilities, and
scenarios

2. Design all the message flows

3. Define the interface methods

4. Design the behavior of the interface and design
of the component (state transition diagrams)

5. Create the (interface/design) Sequence Based
Specifications in ASD

6. Generate the actual software component(s)
using ASD

7. Integrate ASD components in the execution
architecture

O
ne

 In
cr

em
en

ta
l D

es
ig

n-
S

te
p

• Component-Based Design
and the ASD tool forces you
to make complete designs.

• Incremental design is still
possible as long as you
specify the added functionality
completely

	Code generation with ASD �at Philips Healthcare iXR
	Overview
	Philips Healthcare: iXR introduction
	Component-based Design using ASD
	Slide Number 5
	Slide Number 6
	Some numbers
	FE Adapter - internal design
	Observations - Race conditions�
	ASD Code generation applied
	ASD Code generation applied
	Observations – Code generation
	Configuration management approach
	Observations – Configuration management
	Slide Number 15
	Lessons learned
	Lessons learned
	Philips iXR: Architectural Challenge
	Development Process using ASD

