

Performance Engineering in Practice

Kees Schuerman

PROMEXX Technical Automation B.V. Science Park Eindhoven 5644, 5692 EN Son kees.schuerman@promexx.nl

PROfessionele Mentaliteit en EXXpertise...

Performance:

An indicator of how well a system meets its requirements for timeliness.

Timeliness: An indicator of system response time and/or throughput.

"Performance Solutions – A Practical Guide to Creating Responsive, Scalable Software", 2002, C.U. Smith and L.G. Williams, Addison-Wesley.

© PROMEXX Technical Automation B.V.

Performance Troubles

Many projects get in trouble with performance !

© PROMEXX Technical Automation B.V.

Systematically plan for and predict performance.

- Performance requirements analysis
- Performance constraints analysis
- Performance modeling
 - Model system resource usage
 - Model system performance
 - Architecture based

Performance Requirements **Examples**

- An Electronic News Gathering (ENG) video camera shall be fully operational within 2 seconds after switching it on.
- A digital photo camera shall shoot a picture within 50 ms after pressing the shutter release button.
- A printer shall print with a rate of at least 100 A4 pages per minute.
- A vehicle navigation system shall update its road map display at least 10 times per second.
- A vehicle navigation system shall provide guidance within 1 second after entering a destination.

• ...

Performance Constraints Examples

- The main processor runs at 27 MHz.
- Task switching involves an overhead 15 µs.
- Grabbing a free semaphore takes 4 µs.
- Memory can be copied with a rate of 1 to 10 MB/s.
- Creating an application level object takes at least 35 µs.
- The communication channel bandwidth is 100 kB/s.
- The communication channel bandwidth is 1 ms.
- The Flash life time is limited to 10,000 program erase cycles.

....

Performance Engineering -System Resources

- System resource planning
 - Resource usage budgets
- System resource tracking
 - Resource usage measurements
- System resource model
 - Requirements related
 - Constraints related

Performance Engineering -Deployment

- Deployment involves
 - Project management
 - Requirements management
 - Product management & customers
 - Suppliers & purchasing
 - Architects & engineers
- Create awareness
 - Tradeoffs
- Clarify relationships
 - Price \Rightarrow performance
 - Architectural design decisions performance
 - Detailed design & implementation decisions <> performance

Performance Troubles Example

- Network utilization model promised good performance.
- Realized performance was however disappointing !

Performance Troubles Example

Considered candidate solutions

- Faster network
- Faster computers
- Alternative architectures

None of them resulted in better performance !!!

Model validation

- Measure network message traffic for several system performance use cases
- Uncovered and fixed software bug

Performance requirements were satisfied !!

Performance Modeling

Performance models require validation !

February 1, 2005

© PROMEXX Technical Automation B.V.

11/18

Performance Engineering Example -Memory Access Performance

© PROMEXX Technical Automation B.V.

Memory Access Performance

- Memory performance model supports
 - Making memory system design tradeoffs
 - Making memory device selection tradeoffs
 - Making software architecture design tradeoffs
- Memory performance model covers
 - Read & write access performance
 - Random & sequential access performance
 - Cached & uncached access performance
 - Relative & absolute access performance

Memory access performance may be a key system performance constraint while it can be measured quite easily.

Performance Engineering Example -Computational Performance

$CPI = CPI_{cpu} + CPI_{memorysystem}$

Determining Factors

- Instruction set architecture
- Program dynamic instruction sequence
- Memory system characteristics
- Program memory reference behavior

"*Computer Architecture – A Quantitative Approach*", 2nd Edition, 1996, David A. Patterson and John L. Hennessey, Morgan Kaufmann Publishers, Inc.

Computational performance models provide essential information for making hardware architecture design tradeoffs including components selection (processor, memory, buses, etc.).

Performance Engineering Example – Execution Traces

- Execution trace examples
 - Memory reference traces
 - I/O traces
 - Communication traces
- Execution trace applications
 - Execution visualization
 - Execution statistics gathering
 - Design simulations

 Execution trace based performance engineering is heavily used in the development of the Siemens VDO navigation systems

VDO Dayton Navigation Systems

Frankfurter Allgemeine Zeitung, November 2002 :

"Der schnellste Routenführer der Welt – VDO Dayton bietet mit dem MS 5500 Spitzentechnik und viel Tempo"

Auto Connect, November 2002 :

"VDO Dayton MS 5500 Im Temporausch"

EISA Award 2003 - 2004 :

"By comparison with conventional navigation systems, the VDO Dayton MS 5500 is extremely efficient"