

Remote diagnostics and optimization of the machine maintenance service

SASG meeting October 7, 2008 Steve Vandenplas, program manager

FMTC • Celestijnenlaan 300 D • B-3001 Leuven • Belgium •

STRICTLY CONFIDENTIAL

Tel: +32-16-32.80.50 • Fax: +32-16-32.80.64 • Email: info@fmtc.be

© FMTC 2008

Executive summary

- It is demonstrated on a case with "connected" Océ printers how
 - Optimal maintenance attributes/features can be obtained by applying a data mining process
 - Maintenance thresholds can be optimally set
 - Predictive maintenance can be implemented

Overview

- Remote connectivity platform
- What can data mining do for you?
- Data mining methodology for optimal maintenance
- Case study: Océ printers
- Conclusions

Overview

Remote connectivity platform

- > What can data mining do for you?
- Data mining methodology for optimal maintenance
- Case study: Océ printers
- Conclusions

CBM, PdM, ...

Remote connectivity platform

5

Overview

Remote connectivity platform

What can data mining do for you?

- Data mining methodology for optimal maintenance
- Case study: Océ printers
- Conclusions

7

Flanders' MECHATRONICS Technology Centre www.fmtc.be

Goal of the data mining process

The industrial problem

Companies need insight in the operational behavior of their products.

Why?

- Preventive/Predictive maintenance:
 - Cost optimization = Trade-off preventive / corrective
 - □ When will next failure occur?
 - □ What will this failure be?
 - Coordinated maintenance of groups useful?

Diagnostics:

- □ Why does my machine fail earlier than expected?
- □ What are my most common root causes?

STRICTLY CONFIDENTIAL

Goal of the data mining process

Increase insight in machine behavior

- Analyze currently available data and extract factual information.
- Provide indications for missing data.
- Qualify currently used maintenance criteria.

→ Data mining

- Provide a starting point for making reliable maintenance predictions
 - → Prognostics
- Data mining and prognostics in combination with the remote connectivity platform:

→ Remote diagnostics and remote optimization of maintenance actions

Data mining, prognostics, what is it?

Data mining (DM)

Discovering meaningful <u>new correlations</u>, <u>patterns</u> and <u>trends</u> by sifting through large amounts of data stored in repositories, using <u>pattern recognition</u> technologies as well as <u>statistical</u> and mathematical techniques

Prognostics

Predicting the future condition of a machine/component. It can be used to predict remaining component lifetime and perform <u>condition</u> <u>based maintenance</u>

CRISP-DM standard

10

Data modeling step

Technique	Description	Method(s)
Clustering	Unsupervised machine learning to group objects in different classes	K-Means, AutoClass
Classification	Assign unknown objects to well established classes	Neural Networks, K-NN, SVM
Conceptual clustering	Qualitative language to describe the knowledge used for clustering	Decision Tree
Dependency modeling	Describes the dependency between variables	Bayesian Networks PCA, Dendrogram
Summarization	Provides a compact description of a subset of data	Statistical reporting Visualization
Regression	Determines functions that links a given continuous variable to other	ANN, Regression Tree, ML Regression
Rules based modeling	Generate rules that describe tendency of data	Association rules

Criteria for selection of data modelling method

- Interpretability: how well the model helps to understand the data
- Predictive accuracy: how well the model can predict unseen situations
- Computational efficiency: how fast the algorithm is and how well it scales to very large databases

- Remote connectivity platform
- > What can data mining do for you?
- FMTC data mining methodology for optimizing maintenance
- Case study: Océ printers
- Conclusions

Feature selection

Use Data mining to find features linked to component failure

STRICTLY CONFIDENTIAL

Overview

- Remote connectivity platform
- > What can data mining do for you?
- Data mining methodology for optimal maintenance
- Case study: Océ printers
- Conclusions

Current situation for specific printer

- Preventive maintenance is possible when technician is on-site.
- It is based on technician experience and "historical" guidelines. The origin or reason of guideline is established by field experience

Selection of most maintenance intensive components

From historical database maintenance intensive components are selected and a ranking is made

Unified data format (1)

Attribute ₁	Attribute ₂	 	$Attribute_{N}$	Output ₁
Object _{F11}	Object _{F21}		Object _{FN1}	Part not replaced
Object _{F12}	Object _{F22}		Object _{FN2}	Part replaced
Object _{F13}	Object _{F23}		Object _{FN3}	Part not replaced
Object _{F1M}	Object _{F2M}		Object _{FNM}	Part replaced

Case study 1 Feature selection

21

Identify the top features using the replacement information as an output

	Speed	Accuracy	Numerical Output	Categorical Output	optimization
ISF	++	-	N	Y (2 classes)	N
Spearman	+	+	Y	Y	N
Entropy	-	+	N	Y	N
DT		+	Ν	Y	local

Feature Ranking	Attribute
1	Error code XXX
2	ID_XYZ
3	

STRICTLY CONFIDENTIAL.

Define new maintenance action depending on results on 1

New maintenance definition seemed more accurate than information in historical database

Error code XXX	Replacement	Maintenance type
Generated	Yes	Preventive
Generated	No	No replacement
Not generated	Yes	Corrective ?
Not generated	No	No replacement

Unified data format (2)

					\checkmark
Attribute ₁	Attribute ₂	 	Attribute _N	Output ₁	Output ₂
Object _{F11}	Object _{F21}		Object _{FN1}	Part not replaced	No maintenance
Object _{F12}	Object _{F22}		Object _{FN2}	Part replaced	Corrective maintenance
Object _{F13}	Object _{F23}		Object _{FN3}	Part not replaced	No maintenance
Object _{F1M}	Object _{F2M}		Object _{FNM}	Part replaced	Preventive maintenance

24

Identify the top features using the maintenance action as an output

25

Histogram in function of ID_XYZ

ID_XYZ comes out as top-feature

Case study 1 Determine threshold

© FMTC 2008

Error code XXX

Generated

Generated

Not generated

Not generated

Flanders' MECHATRONICS Technology Centre www.fmtc.be

Optimal threshold

Threshold can be chosen based on acceptable failure probability

Replacement

Yes

No

Yes

No

STRICTLY CONFIDENTIAL

Life Time Distribution

In order to define the optimal threshold in a statistical way, survival analyses are used

Probability density functions are fitted to the failure data (in our case corrective maintenance data).

The shaded area between t₁ and t₂ represents the proportion of the population that fails between times t₁ and t₂.

Distribution Models

Weibull distribution model

The Weibull is a very flexible life distribution model with two parameters.

CDF: $F(t) = 1 - e^{-\left(\frac{t}{\alpha}\right)^2}$ RELIABILITY: $e^{-\left(\frac{t}{\alpha}\right)^{y}}$ PDF PDF: $f(t) = \frac{\gamma}{t} \left(\frac{t}{\alpha}\right)^{\gamma} e^{-\left(\frac{t}{\alpha}\right)^{\gamma}}$ FAILURE RATE: $\frac{\gamma}{\alpha} \left(\frac{t}{\alpha}\right)^{\gamma-1}$ 1 MEAN: $\alpha \Gamma \left(1 + \frac{1}{\gamma}\right)$ CDF MEDIAN: $\alpha (\ln 2)_r$ VARIANCE: $\alpha^2 \Gamma \left(1 + \frac{2}{r}\right) - \left[\alpha \Gamma \left(1 + \frac{1}{r}\right)\right]^2$

Reliability Data of OCÉ Case

Data of 10 < ID_XYZ < 800 is considered, with the following reasons:

□ID_XYZ < 10 contains suspicious data: high level of corrective maintenance

□ID_XYZ> 800 contains no corrective maintenance: absence of failure data

Estimated reliability

> Weibull

There is a probability of 24% that the component will fail by unit of ID_XYZ (800)

By analysis of business case it can be checked if threshold at 24% of failure is optimal

Case study 1 Prognostics

STRICTLY CONFIDENTIAL

34

Prognostics on-going

Different prediction algorithms have been checked

	Minimum data needed	Forecast horizon	Robust- ness	Interpretability	Experience needed	Standard software
Regression	+	-	-	+	++	+
Exponential smoothing	+	-	+	+	+	+
ARMA	+	+	+	+/-	-	+
ANN		++	+(+)	-		+
SVR	-	++	+(+)	-	-	?/-

>Improvement of prediction algorithm

Prediction algorithm should deal with the fact that machines are switched off during certain periods

Implementation of demo on-going

Implementation is on-going

Overview

- Remote connectivity platform
- > What can data mining do for you?
- Data mining methodology for optimal maintenance
- Case study: Océ printers
- Conclusions

Conclusions

- FMTC data mining approach was successfully applied to several components
- Data mining results proved useful to optimally find features of interest, better specify the maintenance thresholds, and perform predictive maintenance.
- FMTC and the partner are actively processing the results:
 - Implementation in the machine device manager is ongoing.
 - New business cases are being defined in the context of predictive maintenance.

Acknowledgments

This research work fits in the framework of IRIS (Intelligent Remote Industrial Services) project which is financially supported by the Dutch governmental agencies: Ministry of Economy Affairs, Province of Noord-Brabant, Province Limbrug and 'Samenwerkingsverband Regio Eindhoven, in the framework of Pieken in de Delta (PID) program (Project No. EZ 1/5262). IRIS is a cooperation of the project partners Sioux Remote Solutions, Assembléon, Océ Technologies, FEI Company, FMTC (Belgium) and the Technical University of Findhoven. The IRIS consortium was created in cooperation with the BOM (Brabantse Ontwikkelings Maatschappij) and BO4

Proposed discussion topics

- Remote servicing is a journey, not a destination
- Can service maintenance also be optimized in your organization by application of this method?
- > Where could data mining be successful for you?

