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Abstract

Many architects struggle with a given large code-base, where a lot of knowledge
about the code is in the head of people or worse where the knowledge has disap-
peared. One of the means to recover insight from a code base is by measuring
and instrumenting the code-base. This presentation addresses measurements of
the static aspects of the code, as well as instrumentation to obtain insight in the
dynamic aspects of the code.
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Figure 1: Problem Statement

Architects are frequently confronted with the request to extend an existing
system, while most knowledge about the internals of the system are not readily
available. Figure 1 shows that the requested extension may address new functions
and interfaces, higher performance levels and other improvements. The system
itself is documented in a large pile of documentation, typically more than 100,000
lines of documentation in more than 1000 documents. The code inside the system
is typically beyond 1 million lines in more than 1000 files. Documentation and
code are typically created by hundreds of people in several years, which means that
also hundreds of people have left. In summary, the staring point is one big mass
of electronic information resulting in some very complex system with hundreds of
people involved.

The main questions we will address are:

• How do we get sufficient insight in the internals of the system, in order to
extend the system with an acceptable risk level?

• What is a workable approach to attack this big mass of electronic infor-
mation?

We will address the first question by following the steps as shown in Figure 2.
The first step is to look for available overview information. Next step is to analyze
the static structure of the software, followed by observing, measuring and analyzing
the dynamic system behavior. The last step is to iterate over the first three steps
and to recreate an architectural description.
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Figure 2: Overview of Approach and Article Structure

2 Collect Overviews
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Figure 3: SW Overview(s)

Overview documentation can be partially found in the formal documentation
system, however the remaining development crew is also an important source of
information. So the first step is to browse through the formal documentation and
to interview people. When you do this in the software department you will quickly
get a few figures as shown in Figure 3. The question "please show me the software
architecture" will often result in a diagram showing the mechanisms being used,
the layer structure, and the package structure of the repository.

At least as important is to get an overview of what the system does and how the
system actually works, information that is entirely missing in the earlier diagrams.
Often this information is distributed more and can be found outside the software
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Figure 4: System Overviews

department. Figure 4 shows a number of typical overview diagrams: subsystem
decomposition, control hierarchy of physical units, kinematic behavior, and the
physics or optics structure.

Recovering diagrams as shown here can be done in a few days. Don’t spend
more time during this first step. In the next steps you will often discover that reality
differs from this first design snapshot.

3 Static Measurements and Analysis

EasyVision: 
 Medical Imaging Workstation
URF-systems


typical clinical

image (intestines)


Figure 5: Case 1, a medical imaging workstation

We will use the medical imaging workstation[2] as case for the static analysis.
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The medical imaging workstation is an add-on product to existing X-ray systems,
introduced in the market in 1992. X-ray systems used to print the imaging results
directly on film, by means of a so called CRT-copy, an exact copy of the monitor
display on film. The workstation is positioned between X-ray system and printer
and adds formatting and layout capabilities. One workstation can serve multiple
examination rooms, see figure 5.
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> wc -l  *.m
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551 AnnotateParser.m
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Figure 6: Examples of Macroscopic Fact Finding

A quick way of diving into the big mass of software code is by looking at file
sizes. This product used a flat directory in the code repository, enabling a simple
wc− l ∗ .m1 to count the number of lines per file. Figure 6 shows at the left hand
side some of the result of the word-count command. The right hand side of this
figure shows other analysis data that easily can be obtained, such as version control
data, package data, and data from metrics tools such as QAC.

A yardstick is needed to assess the numbers. Figure 7 shows a histogram of the
sizes of files. This histogram is color coded:

0..50 or more than 1500 linesred: suspect, should be analyzed further

50..100 or 1000..1500yellow: slightly suspect, sample a some of these files

100..1000green: size is OK, sample a few of these files

The idea behind this yardstick is that big files are difficult to understand and that
these files are likely candidates for further modularization. Very small files are
unwanted, because of fragmentation of design and understanding. These files
might be the result of too much modularization. Very big and very small files are
called suspect, there might be a good reason for particular files to be large without
the need for further modularization.

1This system was programmed mostly in Objective-C with the extension.m
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Figure 7: Histogram of File Sizes EV R1.0

The next step is to dive in, by looking into suspect files and by sampling slightly
suspect or non-suspect files. The justification of the file-size can be understood by
reading the code in these files. Figure 8 shows the outcome of code reading of
suspect and sampled files. A number of the small files can be explained by a
chosen design pattern of the database, this justification changes the size annotation
to OK (green). Many top level user interface modules turn out be quite large,
mostly with panel definitions, buttons, call-back assignments and other defini-
tions; further modularization would be rather artificial and fragmenting. These
user interface files also change to OK (green). Another set of read files address
something complex and might need further refactoring.

The analysis so far was performed on the ”current” snapshot of the repository.
The change history of the repository is also a gold mine of information. Figure 9
gives an example of the amount of changes per check-in of one specific file. Within
a few months two big changes have taken place in this file, a third even bigger
change occurs again a few months later. Analysis in retrospect showed that this file
was redesigned twice, without satisfactory results. Then a mature designer did the
redesign as it should have been done in the first place. The latest redesign voided
the earlier redesigns.

Other examples of insights obtained from the change history are suspect files
that are changing all the time. Many systems have some kind of centralized system
constants file. This type of file is related to many other files, making it very
sensitive to changes by many different programmers. A shaky implementation
can also cause a continuous stream of changes: this is a highly suspect type of file.

The macroscopic analysis by means of line counts and the microscopic analysis
by code reading provides only local insights. Static analysis of dependencies
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Figure 8: Microscopic Sampling (Code Reading)
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Figure 9: Changes Over Time

provides a more global insight. Layering diagrams of packages (packages are
files that are grouped together for organizational and logistics purposes) are a good
means to visualize dependencies. Figure 10 shows a simplified layering diagram of
the medical imaging workstation. The actual static dependency diagram counted
15 layers2.

We have shown that quantification of static code aspects helped to get insight in
relative complexity and effort of components and functions. This activity calibrates
the intuition of the architect. The numbers only get useful when macroscopic
numbers are combined by microscopic detailed observations. The combination
of macroscopic and microscopic data can be combined in medium level diagrams,
such as layering diagrams. Layering diagrams are means to show dependencies
and relations. As a side effect of the static analysis ”hot spots”, suspect parts of the

2Initially too many cross relations existed, preventing the creation of a useful layering diagram.
However, the attempt to construct such a diagram triggered a refactoring step to remove the worst
dependencies.
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Figure 10: Simplified Layering Diagram

Quantification helps to 
 calibrate 
the 
intuition 
of the architect


Macroscopic 
 numbers related to 
 code level
  
understanding provides insight


+ relative complexity

+ relative effort

+ hot spots

+ (static) dependencies and relations


Figure 11: Conclusions Static Exploration

code, are detected. This conclusion is summarized in Figure 11.
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4 Dynamic measurements and Analysis
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Figure 12: Dynamic behavior reveals much more than static analysis

We started the more in depth analysis by looking at static structures. Static
structures can easily be analyzed, in other words static analysis has a low threshold.
However, most of the system complexity is in the dynamic behavior. Most system
decisions are related to the dynamics of the system. Figure 12 shows the running
system in its context. The system runs the statically defined code on computing
resources. The dynamic behavior of the system in influenced by the data (config-
uration data, patient information, images) and by the user interacting with the
system. These complex systems show emerging properties, such as performance
and reliability. Of course the product creation process is set up in such a way that
these properties do not emerge completely random, but within desired margins.

We propose to tackle the dynamic analysis by measuring and analyzing the
system at several levels, as shown in Figure 13. The purpose of this approach is
to understand the system performance throughout the entire system. Unfortunately
the entire system is way too complex to understand in one single pass. Therefore
we look for natural layers or subsystems. For the medical imaging workstation a
reasonably generic four layer model is helpful:

Hardware CPU, memory, bus, cache, disk, network, et cetera. At this level
latencies, bandwidth and resource efficiency are valuable data points.

Operating System (OS) Interrupt handling, task switching, process communication,
resource management, and other OS services. At this level duration and
footprint data needs to be known.

Services (or Middleware) Interoperability services based on networks or storage
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Figure 13: Layered Benchmarking

devices, database functionality, and other higher level services. At this level
lots of performance data is needed: throughput, duration, CPU time, footprint,
cache impact, number of generated interrupts and context switches, and
number of invoked OS services.

Applications The end-to-end performance of functions, as perceived by the user
of the system. The same performance data is needed here as on the services
level, plus the amount of service invocations.

Tools Compilers, linkers, high level generators, configurators. These tools generally
influence most other layers. Typical data to be known is locality and density
of code, efficiency of generated output, run-time overhead induced by the
tools.

We will start simple by determining typical values for the mentioned parameters.
However, a lot of additional insight can be obtained by looking at the variation in
these numbers, and by thinking in terms of range boundaries. Special attention is
needed for interference aspects. For example sharing of computing resources often
results in degraded cache performance when functions run concurrently.

Figure 14 shows the rendering pipeline as used in the medical imaging workstation.
Enhancement is a filter operation. The coefficients of the enhancement kernel are
predefined in the acquisition system. The interpolation is used to resize the image
from acquisition resolution to the desired view-port (or film-port) size. The grey-
levels for display are determined by means of a lookup table. A lookup table (LUT)
is a fast and flexible implementation of a mapping function. Normally the mapping
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Figure 14: Example: Processing HW and Service Performance

is linear: the slope determines the contrast and the vertical offset the brightness of
the image. Finally graphics and text are superimposed on the image, for instance
for image identification and for annotations by the user.

The CPU is a limited resource for the Medical Imaging Workstation. The
performance and throughput of the system depend strongly on the available processing
power and the efficiency of using the processing power. CPU time and memory can
be exchanged partially, for instance by using caches to store intermediate results.
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Figure 15: The CPU processing times are shown per step in the processing pipeline.
The processing times are mapped on a proportional time line to visualize the
viewing responsiveness

Figure 15 shows typical update speeds and processing times for a single image
user interface layout. Contrast brightness (C/B in the figure) changes must be fast,
to give immediate visual feedback when turning a contrast or brightness wheel.
Working on the cached resized image about 7 updates per second are possible,
which is barely sufficient. The gain of the cached design relative to the non-cached
design is about a factor 8 (7 updates per second versus 0.9 updates per second).
Zooming and panning is done with an update rate of 3 updates per second. The
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performance gain for zooming and panning is from application viewpoint less
important, because these functions are used only exceptionally in the daily use.
Retrieving the next image (also a very frequent user operation), requires somewhat
more than a second, which was acceptable at that moment in time.

The processing functions are measured at two levels:

• hardware capability (CPU, cache, memory)

• service level performance (the complete processing pipeline as used by appli-
cations)

The hardware oriented micro-benchmarks measure the performance of individual
processing steps as function of operation, image size and pixel size. In this way
insight is obtained in the raw CPU speed (mostly operation dependent), memory
behavior (for instance consequences of alignment), and cache performance (depends
on image size and algorithm). The service level performance is more aggregated
functionality including many higher level design decisions, such as caching and
granularity choices.

The image processing is at the core of this system. Hardware characteristics
and low level software design choices have a big impact on system performance.
As a consequence many higher level design constructs are influenced by hardware
and low level software constraints. Measuring these core performance numbers
often results in insight in system design choices:

• Why are dedicated processing functions or pipelines being used?

• What is the logic behind the ordering?

• Why are these elements stored persistently?
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Figure 16: Resource Measurement Tools
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The most important tools are:Object Instantiation Tracing, standard Unix
utilitiesand aheap viewer. The resource usage is measured at well defined moments
in time, by means of events. The entire software is event-based. The event for
resource measurement purposes can be fired by programming it at the desired point
in the code, or by a user interface event, or by means of the Unix command line.

The resource usage is measured twice: before performing the use case under
study and afterwards. The measurement results show both the changes in resource
usage as well as the absolute numbers. The initialization often takes more time in
the beginning, while in a steady running system no more initialization takes place.
Normally the real measurement is preceded by a set of actions to bring the system
in a kind of steady state.

Note that the budget definitions and theUnix utilities fit well together, by
design. The types of memory budgeted are the same as the types of memory
measured by the Unix utilities. The typically used Unix utilities are:

ps process status and resource usage per process

vmstat virtual memory statistics

kernel resource statskernel specific resource usage

Theheap-viewershows the free and allocated memory blocks in different colors,
comparable with the standard Windows disk defragmentation utilities.
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Figure 17: Example output of OIT (Object Instantiation Tracing) tool

TheObject Instantiation Tracing(OIT) keeps track of all object instantiations
and disposals. It provides an absolute count of all the objects and the change in
the number of objectives relative to the previous measurement. The system is
programmed with Objective-C. This language makes use of run-time environment,
controlling the creation and deletion of objects and the associated housekeeping.
The creation and deletion operations of this run-time environment were rerouted
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via a small piece of code that maintained the statistics per class of object instanti-
ations and destructions. At the moment of a trigger this administration was saved
in readable form. The few lines of code (and the little run time penalty) have paid
many many times. The instantiation information gives an incredible insight in the
internal working of the system.

TheObject Instantiation Tracingalso provided heap memory usage per class.
This information could not be obtained automatically. At every place in the code
where malloc and free was called some additional code was required to get this
information. Figure 17 shows an example output of the OIT tool. Per class the
current number of objects is shown, the number of deleted and created objects
since the previous measurement and the amount of heap memory in use. The user
of this tool knows the use case that is being measured. In this case, for example,
the next imagefunction. For this simple function 8 new BitMaps are allocated
and 3 AsynchronousIO objects are created. The user of this tool compares this
number with his expectation. This comparison provides more insight in design and
implementation.
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Figure 18: Memory Instrumentation

Early during the development of the medical imaging workstation we hit perfor-
mance problems caused by the usage of too much memory. Initial system level
measurements indicated a use of 200 MByte, while the available physical memory
was only 64 MByte. The available measurement tools were useful to understand
about half of the memory use, the other half was one big unaccounted lump of
memory. Manual instrumentation of the code, by intercepting memory alloca-
tions and de-allocations helped to understand 80% of this unaccounted lump. This
manual instrumentation activity was stopped at 80%, because a sufficient level of
understanding was reached.

Figure 19 shows an overview of the benchmarking and other measurement
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Figure 19: Overview of benchmarks and other measurement tools

tools used during the design. The overview shows per tool what is measured and
why, and how accurate the result is. It also shows when the tool is being used.

The Objective-C overhead measurements, to measure the method call overhead
and the memory overhead caused by the underlying OO technology, is used only in
the beginning. This data does not change significantly and scales reasonably with
the hardware improvements.

A set of coarse benchmarking tools was used to characterize new hardware
options, such as new workstations. These tools are publicly available and give a
coarse indication of the hardware potential.

The application critical characterization is measured by more dedicated tools,
such as the image processing benchmark, which runs all the algorithms with different
image and pixel sizes. This tool is home made, because it uses the actual image
processing library used in the product. The outcome of these measurements were
used to make design optimizations, both in the library itself as well as in the use of
the library.

Critical system functionality is measured by dedicated measurement tools, which
isolate the desired functionality, such as file I/O, socket, networking and database.

The complete system is put under load conditions, by continuously importing
and exporting data and storing and retrieving data. This load test was used as
regression test, giving a good insight in the system throughput and in the memory
and CPU usage.

Figure 20 positions the tools and instrumentation efforts in the benchmarking
stack as originally shown in Figure 13. Many of the micro-benchmarks are small
programs, where the benchmarks operation is repeated many times and the time
is measured by time-stamps before and after the repetition. Some information is
obtained by instrumentation. Test inputs are needed to obtain repeatable measurement
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Figure 20: Tools and Instruments Positioned in the Stack
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Figure 21: Case 2: ARM9 Cache Performance

A more up to date example of micro-benchmarking uses the ARM9 as case,
see Figure 21. A typical chip based on the ARM9 architecture has anno 2006 a
clock-speed of 200 MHz. The memory is off-chip standard DRAM. The CPU chip
has on-chip cache memories for instruction and data, because of the long latencies
of the off-chip memory access. The memory bus is often slower than the CPU
speed, anno 2006 typically 100 MHz.

Figure 22 shows more detailed timing of the memory accesses. After 22
CPU cycles the memory responds with the first word of a memory read request.
Normally an entire cache line is read, consisting of 8 32-bit words. Every word
takes 2 CPU cycles = 1 bus cycle. So after22 + 8 ∗ 2 = 38 cycles the cache-line is
loaded in the CPU.
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Figure 23: Actual ARM Figures

At OS level a micro-benchmark was performed to determine the context switch
time of a real-time executive on this hardware platform. The measurement results
are shown in Figure 23. The measurements were done under different condi-
tions. The most optimal time is obtained by simply triggering continuous context
switches, without ant other activity taking place. The effect is that the context
switch runs entirely from cache, resulting in a2µs context switch time. Unfortu-
nately, this is a highly misleading number, because in most real-world applications
many activities are running on a CPU. The interrupting context switch pollutes
the cache, which slows down the context switch itself, but it also slows down the
interrupted activity. This effect can be simulated by forcing a cache flush in the
context switch. The performance of the context switch with cache flush degrades
to 10µs. For comparison the measurement is also repeated with a disabled cache,
which decreases the context switch even more to50µs. These measurements show
the importance of the cache for the CPU load. In cache unfriendly situations (a
cache flushed context switch) the CPU performance is still a factor 5 better than in
the situation with a disabled cache. One reason of this improvement is the locality
of instructions. For 8 consecutive instructions ”only” 38 cycles are needed to load
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these 8 words. In case of a disabled cache8 ∗ (22+2 ∗ 1) = 192 cycles are needed
to load the same 8 words.
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Figure 24: Context Switch Overhead

Figure 24 shows the impact of context switches on system performance for
different context switch rates. Both parameterstcontextswitch andncontextswitch can
easily be measured and are quite indicative for system performance and overhead
induced by design choices. The table shows that for the realistic number oftcontextswitch =
10µs the number of context switches can be ignored with 50 context switches per
second, it becomes significant for a rate of 500 per second, while 5000 context
switches per second consumes half of the available CPU power. A design based
on the too optimistictcontextswitch = 2µs would assess 5000 context switches as
significant, but not yet problematic.
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5 Integration, Discussion and Conclusions
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Figure 25: Performance as Function of all Layers

All data gathering activities must be processed in an intelligent way into a
set of higher level diagrams and models. For example the micro-benchmarks
generate a lot of data points that should be turned into a layered performance
model, visualized in Figure 25. This performance model isnot one single formula,
but a more a set of related formula’s. For instance the interrupt handling and task
switching duration can be expressed in the lower layers as function of hardware
parameters:

tinterrupthandling = f(CPUspeed, cachesize, OS)

At the higher service layer a typical value for the interrupt handling time is used,
without the complicating dependencies on hardware and operating system:

tservice = ninterrupts∗10µs(tinterrupthandling)+gservice(inputdata, ttransaction, tnetwork)

We recommend to work bottom-up and top-down concurrently. Bottom-up
means start to measure the bottom layer and work upwards. Try to understand
the higher layer numbers in terms of the lower layer data, during this bottom-up
process. Top-down starts at the end user side, by measuring end-to-end perfor-
mance. The end-to-end performance can be decomposed in contributions of the
subsystems or functions involved in this operation. The top-down approach requires
a lot of reasoning:

• what is happening and whatshouldbe happening?

• how much time is contributed by the different functions?

• what are the main lower level parameters that determine this amount of time

At last the end-to-end performance should be explainable in terms of the lower
level micro-benchmark results. By working concurrently bottom-up and top-down
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Figure 26: Annotated Performance Formula

both activities can be limited torelevantmeasurements. In a system that does only
have a few interrupts, the interrupt handling time might be ignored.

Figure 26 annotates the previous figure with some typical issues and numbers
from the 2 cases that have been discussed.
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Figure 27: Keep iterating!

The dynamic measurements often trigger plenty of questions about the code
structure. These questions are addressed by code reading and other static analysis,
see Figure 27. The other way around code reading and static analysis results trigger
a lot of questions about the dynamic behavior. These questions result in new experi-
ments and measurements. During this integration the insight in the overall complex
system increases. The insights obtained along this path should be captured in
higher level diagrams. After some time a system design description is growing,
allowing a more founded extension of the system as required originally.

We close this paper with a number of discussion propositions as shown in
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Figure 28: Discussion propositions

Figure 28:

• Many design teams have lost the overview of the system. The consequence is
that product extension becomes a trial and error proposition, where especially
performance and reliability become unpredictable emerging properties.

• A good (SW) architect has a quantified understanding of system context,
system and software, as shown at the left hand of the figure.

• A good design facilitates measurements of critical aspects for a small realization
effort. Typical instrumentation functions have a size of tens to hundreds lines
of code.
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